DOI QR코드

DOI QR Code

Oral Metagenomic Analysis Techniques

  • Received : 2019.04.26
  • Accepted : 2019.05.21
  • Published : 2019.06.30

Abstract

The modern era of microbial genome analysis began in earnest in the 2000s with the generalization of metagenomics and gene sequencing techniques. Studying complex microbial community such as oral cavity and colon by a pure culture is considerably ineffective in terms of cost and time. Therefore, various techniques for genomic analysis have been developed to overcome the limitation of the culture method and to explore microbial communities existing in the natural environment at the gene level. Among these, DNA fingerprinting analysis and microarray chip have been used extensively; however, the most recent method of analysis is metagenomics. The study summarily examined the overview of metagenomics analysis techniques, as well as domestic and foreign studies on disease genomics and cluster analysis related to oral metagenome. The composition of oral bacteria also varies across different individuals, and it would become possible to analyze what change occurs in the human body depending on the activity of bacteria living in the oral cavity and what causality it has with diseases. Identification, isolation, metabolism, and presence of functional genes of microorganisms are being identified for correlation analysis based on oral microbial genome sequencing. For precise diagnosis and treatment of diseases based on microbiome, greater effort is needed for finding not only the causative microorganisms, but also indicators at gene level. Up to now, oral microbial studies have mostly involved metagenomics, but if metatranscriptomic, metaproteomic, and metabolomic approaches can be taken together for assessment of microbial genes and proteins that are expressed under specific conditions, then doing so can be more helpful for gaining comprehensive understanding.

Keywords

References

  1. Grice EA, Segre JA: The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13: 151-170, 2012. https://doi.org/10.1146/annurev-genom-090711-163814
  2. Pace NR: A molecular view of microbial diversity and the biosphere. Science 276: 734-740, 1997. https://doi.org/10.1126/science.276.5313.734
  3. Torsvik V, Goksoyr J, Daae FL: High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782-787, 1990. https://doi.org/10.1128/AEM.56.3.782-787.1990
  4. The NIH HMP Working Group, Jane Peterson, Susan Garges, et al.: The NIH Human Microbiome Project. Genome Res 19: 2317-2323, 2009. https://doi.org/10.1101/gr.096651.109
  5. Staley JT, Konopka A: Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39: 321-346, 1985. https://doi.org/10.1146/annurev.mi.39.100185.001541
  6. Ward DM, Weller R, Bateson MM: 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63-65, 1990. https://doi.org/10.1038/345063a0
  7. Weinstock GM: Genomic approaches to studying the human microbiota. Nature 489: 250-256, 2012. https://doi.org/10.1038/nature11553
  8. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM: Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5: R245-R249, 1998. https://doi.org/10.1016/S1074-5521(98)90108-9
  9. Mardis ER: Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9: 387-402, 2008. https://doi.org/10.1146/annurev.genom.9.081307.164359
  10. Kim W: Application of metagenomic techniques: understanding the unrevealed human microbiota and explaining the in clinical infectious diseases. J Bacteriol Virol 42: 263-275, 2012. https://doi.org/10.4167/jbv.2012.42.4.263
  11. Woese CR, Fox GE: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74: 5088-5090, 1997. https://doi.org/10.1073/pnas.74.11.5088
  12. Ji B, Nielsen J: From next-generation sequencing to systematic modeling of the gut microbiome. Front Genet 6: 219, 2015. https://doi.org/10.3389/fgene.2015.00219
  13. Sogin ML, Morrison HG, Huber JA, et al.: Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A 103: 12115-12120, 2006. https://doi.org/10.1073/pnas.0605127103
  14. Lazarevic V, Whiteson K, Huse S, et al.: Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79: 266-271, 2009. https://doi.org/10.1016/j.mimet.2009.09.012
  15. Gloor GB, Hummelen R, Macklaim JM, et al.: Microbiome profiling by illumina sequencing of combinatorial sequencetagged PCR products. PLoS One 5: e15406, 2010. https://doi.org/10.1371/journal.pone.0015406
  16. Hummelen R, Fernandes AD, Macklaim JM, et al.: Deep sequencing of the vaginal microbiota of women with HIV. PLoS One 5: e12078, 2010. https://doi.org/10.1371/journal.pone.0012078
  17. Loman NJ, Constantinidou C, Chan JZ, et al.: Highthroughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10: 599-606, 2012. https://doi.org/10.1038/nrmicro2850
  18. Janda JM, Abbott SL: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45: 2761-2764, 2007. https://doi.org/10.1128/JCM.01228-07
  19. Klindworth A, Pruesse E, Schweer T, et al.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41: e1, 2012. https://doi.org/10.1093/nar/gks808
  20. Eren AM, Borisy GG, Huse SM, Mark Welch JL: Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A 111: E2875-E2884, 2014. https://doi.org/10.1073/pnas.1409644111
  21. Schloss PD, Westcott SL, Ryabin T, et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541, 2009. https://doi.org/10.1128/AEM.01541-09
  22. Cole JR, Wang Q, Fish JA, et al.: Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42: D633-D642, 2014. https://doi.org/10.1093/nar/gkt1244
  23. Abarenkov K, Tedersoo L, Nilsson RH, et al.: PlutoF-a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinform 6: 189-196, 2010. https://doi.org/10.4137/EBO.S6271
  24. Bocci V: The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspect Biol Med 35: 251-260, 1992. https://doi.org/10.1353/pbm.1992.0004
  25. Hamady M, Knight R: Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19: 1141-1152, 2009. https://doi.org/10.1101/gr.085464.108
  26. Dewhirst FE, Chen T, Izard J, et al.: The human oral microbiome. J Bacteriol 192: 5002-5017, 2010. https://doi.org/10.1128/JB.00542-10
  27. Griffen AL, Beall CJ, Firestone ND, et al.: CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One 6: e19051, 2011. https://doi.org/10.1371/journal.pone.0019051
  28. Wade WG: Characterisation of the human oral microbiome. J Oral Biosci 55: 143-148, 2013. https://doi.org/10.1016/j.job.2013.06.001
  29. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M: Metatranscriptomics of the human oral microbiome during health and disease. MBio 5: e01012-e01014, 2014. https://doi.org/10.1128/mBio.01012-14
  30. Frias-Lopez J, Duran-Pinedo A: Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 194: 2082-2095, 2012. https://doi.org/10.1128/JB.06328-11
  31. Duran-Pinedo AE, Chen T, Teles R, et al.: Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J 8: 1659-1672, 2014. https://doi.org/10.1038/ismej.2014.23
  32. Wang J, Qi J, Zhao H, et al.: Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep 3: 1843, 2013. https://doi.org/10.1038/srep01843
  33. Bik EM, Long CD, Armitage GC, et al.: Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4: 962-974, 2010. https://doi.org/10.1038/ismej.2010.30
  34. Zarco MF, Vess TJ, Ginsburg GS: The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis 18: 109-120, 2012. https://doi.org/10.1111/j.1601-0825.2011.01851.x
  35. Segata N, Haake SK, Mannon P, et al.: Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13: R42, 2012. https://doi.org/10.1186/gb-2012-13-6-r42
  36. Hasan NA, Young BA, Minard-Smith AT, et al.: Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 9: e97699, 2014. https://doi.org/10.1371/journal.pone.0097699
  37. Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ: Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics 4: 22, 2011. https://doi.org/10.1186/1755-8794-4-22
  38. Said HS, Suda W, Nakagome S, et al.: Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res 21: 15-25, 2014. https://doi.org/10.1093/dnares/dst037
  39. Ding T, Schloss PD: Dynamics and associations of microbial community types across the human body. Nature 509: 357-360, 2014. https://doi.org/10.1038/nature13178
  40. Kim AR, Jeong MJ, Ahn YS, Kim MN, Kim SI, Lim DS: The interactive effect of these bacterial substrates on the growth of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis. J Dent Hyg Sci 15: 209-219, 2015. https://doi.org/10.17135/jdhs.2015.15.2.209
  41. Hwang SJ: Influence of smoking cessation on periodontal biomarkers in gingival crevicular fluid for 1 year: a case study. J Dent Hyg Sci 14: 525-536, 2014. https://doi.org/10.17135/jdhs.2014.14.4.525
  42. Choi ES, Cho HA: Association between oral health status and rheumatoid arthritis. J Dent Hyg Sci 15: 612-619, 2015. https://doi.org/10.17135/jdhs.2015.15.5.612
  43. Hajishengallis G, Lamont RJ: Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27: 409-419, 2012. https://doi.org/10.1111/j.2041-1014.2012.00663.x
  44. Hajishengallis G, Darveau RP, Curtis MA: The keystonepathogen hypothesis. Nat Rev Microbiol 10: 717-725, 2012. https://doi.org/10.1038/nrmicro2873
  45. Griffen AL, Beall CJ, Campbell JH, et al.: Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6: 1176-1185, 2012. https://doi.org/10.1038/ismej.2011.191
  46. Abusleme L, Hong BY, Dupuy AK, Strausbaugh LD, Diaz PI: Influence of DNA extraction on oral microbial profiles obtained via 16S rRNA gene sequencing. J Oral Microbiol 6: e1-e7, 2014. https://doi.org/10.3402/jom.v6.23990
  47. Kirst ME, Li EC, Alfant B, et al.: Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol 81: 783-793, 2015. https://doi.org/10.1128/AEM.02712-14
  48. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 18: 449: 804-810, 2007. https://doi.org/10.1038/nature06244
  49. Abusleme L, Dupuy AK, Dutzan N, et al.: The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J 7: 1016-1025, 2013. https://doi.org/10.1038/ismej.2012.174
  50. Kononen E, Paju S, Pussinen PJ, et al.: Population-based study of salivary carriage of periodontal pathogens in adults. J Clin Microbiol 45: 2446-2451, 2007. https://doi.org/10.1128/JCM.02560-06
  51. Kulekci G, Leblebicioglu B, Keskin F, Ciftci S, Badur S: Salivary detection of periodontopathic bacteria in periodontally healthy children. Anaerobe 14: 49-54, 2008. https://doi.org/10.1016/j.anaerobe.2007.08.001
  52. Belstrom D, Fiehn NE, Nielsen CH, et al.: Differences in bacterial saliva profile between periodontitis patients and a control cohort. J Clin Periodontol 41: 104-112, 2014. https://doi.org/10.1111/jcpe.12190
  53. Yamanaka W, Takeshita T, Shibata Y, et al.: Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy. PLoS One 7: e42806, 2012. https://doi.org/10.1371/journal.pone.0042806
  54. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al.: The oral metagenome in health and disease. ISME J 6: 46-56, 2012. https://doi.org/10.1038/ismej.2011.85
  55. Corby PM, Lyons-Weiler J, Bretz WA, et al.: Microbial risk indicators of early childhood caries. J Clin Microbiol 43: 5753-5759, 2005. https://doi.org/10.1128/JCM.43.11.5753-5759.2005
  56. Aas JA, Griffen AL, Dardis SR, et al.: Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46: 1407-1417, 2008. https://doi.org/10.1128/JCM.01410-07
  57. Jiang W, Ling Z, Lin X, et al.: Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood. Microb Ecol 67: 962-969, 2014. https://doi.org/10.1007/s00248-014-0372-y
  58. Jiang W, Zhang J, Chen H: Pyrosequencing analysis of oral microbiota in children with severe early childhood dental caries. Curr Microbiol 67: 537-542, 2013. https://doi.org/10.1007/s00284-013-0393-7
  59. Ling Z, Kong J, Jia P, et al.: Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60: 677-690, 2010. https://doi.org/10.1007/s00248-010-9712-8
  60. Luo AH, Yang DQ, Xin BC, Paster BJ, Qin J: Microbial profiles in saliva from children with and without caries in mixed dentition. Oral Dis 18: 595-601, 2012. https://doi.org/10.1111/j.1601-0825.2012.01915.x
  61. Yang F, Zeng X, Ning K, et al.: Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6: 1-10, 2012. https://doi.org/10.1038/ismej.2011.71
  62. Yang F, Ning K, Chang X, et al.: Saliva microbiota carry caries-specific functional gene signatures. PLoS One 9: e76458, 2014. https://doi.org/10.1371/journal.pone.0076458
  63. Ai JY, Smith B, Wong DT: Bioinformatics advances in saliva diagnostics. Int J Oral Sci 4: 85-87, 2012. https://doi.org/10.1038/ijos.2012.26