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A SINGULAR FUNCTION FROM STURMIAN CONTINUED

FRACTIONS

DoYong Kwon

Abstract. For α ≥ 1, let sα(n) = ⌈αn⌉ − ⌈α(n − 1)⌉. A continued
fraction C(α) = [0; sα(1), sα(2), . . .] is considered and analyzed. Appeal-
ing to Diophantine approximation, we investigate the differentiability of
C(α), and then show its singularity.

1. Introduction

A real function is said to be singular provided that its derivative vanishes
almost everywhere. A numeration is a particular rule of expressing numbers
in finite or infinite words. Many singular functions are constructed by apply-
ing two different numerations at once. Such function y = f(x) is typically
devised as follows. The real number x is encoded into some words via the
one numeration, and (after word processing if necessary) this word is inter-
preted according to the other numeration to produce the real number y. As
for the classical Cantor function, ternary expansions and then binary ones are
employed [3]. Meanwhile, the Minkowski question mark function ?(x) involves
continued fractions and alternate dyadic expansions [4, 17]. Among accumu-
lated works on the Minkowski question mark function, Parad́ıs et al. [13] and
Dushistova et al. [5] specified where ?′(x) = 0 and ?′(x) = ∞ in terms of par-
tial quotients of x = [0; a1, a2, . . . , at, . . .]. More precisely, the increasing rate
of their sums Sx(t) = a1 + a2 + · · ·+ at does matter.

Let ⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions, respectively. An arith-
metic function sα(n) = ⌈αn⌉ − ⌈α(n − 1)⌉ represents any α ≥ 0 as an infinite
word sα := sα(1)sα(2) · · · over the alphabet {⌈α⌉ − 1, ⌈α⌉}. The word sα is
known to be lexicographically greatest among all mechanical words of slope α
[2]. Mechanical words of irrational slopes are called Sturmian words, but Stur-
mian words also refer to mechanical words of rational slopes in some literature.
The title of the present paper reflects this abuse of terminology.
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For β > 1, β-expansions [14] turn the Sturmian words into real numbers

Ξ(α, β) :=
∞
∑

n=1

sα(n)

βn
.

Diverse aspects of the function Ξ(α, β) including its singularity were investi-
gated in [8, 9]. Following a similar vein, the author studied the singularity of
Dirichlet series with Sturmian coefficients

Z(α, s) :=

∞
∑

n=1

sα(n)

ns
,

where s is a complex number with Re(s) > 1 [10, 11].
The present paper considers continued fractions whose partial quotients are

Sturmian words

C(α) := [0; sα(1), sα(2), . . .] =
1

sα(1) +
1

sα(2) + · · ·

.

Here we assume α ≥ 1 because every partial quotient is a positive integer. One

readily notes that C(1) = −1+
√
5

2 , C(32 ) = −1+
√
3

2 , and more generally that
C(α) is a quadratic irrational number whenever α ≥ 1 is rational. On the
other hand, if α ≥ 1 is irrational, then C(α) is known to be a transcendental
number [1].

Appealing to a close connection between Sturmian words and Diophantine
approximations, we prove that the function C(α) is singular.

2. Sturmian words and Diophantine approximations

First, we briefly review basic facts on continued fractions, which can be
found in standard texts, e.g., [7, 15].

Let t = [a0; a1, a2, . . .] be the continued fraction expansion of a real number
t, where a0 ∈ Z and ai are positive integers for i ≥ 1. Recall that, for k ≥ 0,

pk/qk := [a0; a1, . . . , ak] = a0 +
1

a1 +
1

.. . +
1

ak

, gcd(pk, qk) = 1,

is called the k-th convergent of t. If we set p−1 = 1 and q−1 = 0, then the
convergents satisfy

pk+1 = ak+1pk + pk−1, qk+1 = ak+1qk + qk−1 for k ≥ 0.

The k-th tail of the continued fraction,

ζk := [ak; ak+1, ak+2, . . .] = ak +
1

ak+1 +
1

ak+2 + · · ·

,
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is called the k-th complete quotient of t. One immediately sees that t is rational
if and only if its continued fraction expansion is finite. If t is irrational, then
the sequence of its convergents pk/qk converges to t in the following manner.

Proposition 2.1. Let t be an irrational number. Then, for any k ≥ 1,

t−
pk
qk

=
(−1)k

qk(qkζk+1 + qk−1)
,

and hence
1

qk(qk + qk+1)
<

∣

∣

∣

∣

t−
pk
qk

∣

∣

∣

∣

<
1

qkqk+1
.

For real α ≥ 0 and ρ ∈ [0, 1], two arithmetic functions sα,ρ, s
′
α,ρ are defined

by

sα,ρ(n) := ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋,

s′α,ρ(n) := ⌈α(n+ 1) + ρ⌉ − ⌈αn+ ρ⌉.

Then two infinite words sα,ρ := sα,ρ(0)sα,ρ(1) · · · and s′α,ρ := s′α,ρ(0)s
′
α,ρ(1) · · ·

are called lower and upper mechanical word respectively with slope α and
intercept ρ. For general theory on mechanical words, the readers are referred
to [12]. This paper studies continued fractions whose partial quotients are
from the upper mechanical word s′α,0 with α ≥ 1 and ρ = 0. In fact, continued
fractions with partial quotients from the lower mechanical word sα,0 can be
also analyzed by a similar technique in this paper. But the cases of general
mechanical words sα,ρ or s′α,ρ are much more complicated to analyze. This
is why inhomogeneous Diophantine approximations are necessarily involved if
ρ /∈ αZ + Z.

If α ≥ 0 is a rational number, then both sα,ρ or s′α,ρ are obviously purely
periodic words over the alphabet {⌈α⌉ − 1, ⌈α⌉}. The case where ρ = 0 is of
our special interest. For a positive rational α = p/q with gcd(p, q) = 1, let
b = a + 1 = ⌈α⌉. Then sα,0 and s′α,0 comprise a factor zp,q of length q − 2 in
common, as in the following manner,

sα,0 = (azp,qb)
∞, s′α,0 = (bzp,qa)

∞.

Here, zp,q coincides with the reversal of itself, i.e., is a palindrome [12, Corollary
2.2.9]. If q = 2, then zp,q is, of course, the empty word. Moreover, if q = 1, or
if α = p is an integer, then both azp,qb and bzp,qa should read α by convention.
Endowing {⌈α⌉− 1, ⌈α⌉}N with product topology, we can state the continuities
of functions α 7→ sα,0 and α 7→ s′α,0. At every positive rational, these functions
are continuous in the one direction while discontinuous in the other direction,
as the next lemma says.

Lemma 2.2. Let p/q > 0 be rational with gcd(p, q) = 1, and set b = a+ 1 =
⌈p/q⌉. Then

• limα→(p/q)− sα,0 = a(zp,qab)
∞, limα→(p/q)+ sα,0 = (azp,qb)

∞,

• limα→(p/q)− s′α,0 = (bzp,qa)
∞, limα→(p/q)+ s′α,0 = b(zp,qba)

∞.
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When q = 1, the infinite word a(zp,qab)
∞ is understood as ab∞ with b =

a + 1 = p, while b(zp,qba)
∞ as ba∞ with b = a + 1 = p + 1. Lemma 2.3(b)

and (c) below prove the case of upper mechanical words. The proof for lower
mechanical words is similar.

Now, for typographical convenience, we also write sα(n) := s′α,0(n− 1), and
so sα = sα(1)sα(2) · · · = s′α,0(0)s

′
α,0(1) · · · = s′α,0. For any real t, we mean by

‖t‖ the distance from t to the nearest integer, and by {t} the fractional part of
t, i.e., t = ⌊t⌋+ {t}. The following notation is also useful:

〈t〉 :=

{

{t}, if t /∈ Z,

1, if t ∈ Z.

The next lemma enables us to estimate truncations of Sturmian continued
fractions.

Lemma 2.3. Let N be a positive integer.

(a) For an irrational α0 > 0, we set

(1) δN := min

{

‖α0n‖

n
: 1 ≤ n ≤ N

}

.

If |α−α0| < δN , then two Sturmian words sα and sα0 have a common

prefix of length ≥ N .

(b) For a rational p/q > 0 with gcd(p, q) = 1, let us set b = a+ 1 = ⌈p/q⌉,
and define

(2) δN := min

{

〈(p/q) · n〉

n
: 1 ≤ n ≤ N

}

.

If 0 ≤ p/q−α < δN , then both sα and sp/q = (bzp,qa)
∞ have a common

prefix of length ≥ N .

(c) With a rational p/q > 0 and integers a, b as in (b), we define

(3) δN := min

{

1− {(p/q) · n}

n
: 1 ≤ n ≤ N

}

.

If 0 < α−p/q ≤ δN , then both sα and b(zp,qba)
∞ have a common prefix

of length ≥ N .

Proof. (a) Since α0 is irrational, α0n is an integer only if n = 0. Suppose, on the
contrary, that the k-th letters of sα and sα0 are different for some 1 ≤ k ≤ N .
We may assume that k is the smallest such integer. Then ⌈αi⌉ = ⌈α0i⌉ for all
i = 1, 2, . . . , k − 1. If sα(k) < sα0(k), then

αk ≤ α0k − {α0k} ≤ α0k − δNk,

where we have used {α0k}
k ≥ ‖α0k‖

k ≥ δN in the last inequality. Now we have a
contradiction α ≤ α0−δN . On the other hand, assume sα0(k) < sα(k). Noting
1−{α0k}

k ≥ ‖α0k‖
k ≥ δN , one deduces that

αk > α0k + (1− {α0k}) ≥ α0k + δNk,
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which yields a contradiction α > α0 + δN .
(b) If the k-th letters of sα and sp/q are different for some 1 ≤ k ≤ N , and

if k is the smallest such integer, then sα(k) < sp/q(k), and therefore,

αk ≤ (p/q) · k − 〈(p/q) · k〉 ≤ (p/q) · k − δNk ⇒ p/q − α ≥ δN .

(c) See [9, Lemma 2.3]. �

Let α be an irrational number. Recall that the irrationality exponent of α
is defined by

µ(α) := sup{ν : lim inf
q→∞

qν−1‖qα‖ = 0}.

One immediately checks that µ(α) ≥ 2 for every irrational α. And the well-
known Khinchin’s theorem states that µ(α) = 2 for almost every α in the
sense of Lebesgue measure. In particular, every algebraic irrational number
has irrationality exponent 2 by Roth’s theorem [16]. In view of finer measures,
for c ≥ 2, the Hausdorff dimension of the set {α ∈ R : µ(α) ≥ c} is 2/c, which
is due to Jarńık [6]. Consequently, the set {α ∈ R : µ(α) = ∞} of Liouville
numbers has Hausdorff dimension zero.

The irrationality measure crucially required in our analysis is

θ(α) := sup{λ : lim inf
q→∞

λq‖qα‖ = 0},

which is termed the irrationality base of α, and was firstly coined by Sondow
[18]. The definitions tell us that µ(α) < ∞ implies θ(α) = 1, and that θ(α) > 1
implies µ(α) = ∞. But there are uncountably many α such that both µ(α) = ∞
and θ(α) = 1 hold. The irrationality base can be computed via the convergent
of α.

Proposition 2.4 ([8,18]). Let pk/qk be the k-th convergent of an irrational α.
Then

log θ(α) = − lim inf
k→∞

log ‖qkα‖

qk
= lim sup

k→∞

log qk+1

qk
.

The next lemma will play a key role to establish the main theorem. See
[8, Theorem 4.12] for its proof.

Lemma 2.5. For irrational α0, let δN be as in (1).

(a) If θ(α0) < λ, then there exists a positive integer N0 for which

∞
⋃

n=N0

(λ−n, δn) = (0, δN0).

Furthermore, two consecutive intervals in the union have a nonempty

intersection.

(b) If 1 < λ < θ(α0), then a set

Q =

{

n ∈ N : δn ≤
‖α0n‖

n
< λ−n

}

contains infinitely many denominators of the convergents of α0.
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3. Calculus on Sturmian continued fractions

This section studies the continuity and differentiability of the function C :
[1,∞) → R defined by

C(α) := [0; sα(1), sα(2), . . .].

If w = a1a2 · · · is an infinite word over positive integers, then we also write
[0;w] := [0; a1, a2, . . .] for continued fraction. If α = p/q with gcd(p, q) = 1,
and if b = a + 1 = ⌈α⌉, for example, then C(α) = [0; sα(1), sα(2), . . .] =
[0; (bzp,qa)

∞].
We explore first the behavior of C(α) at rational points, where it is left-

continuous but not right-continuous. This fact originally comes from the left-
continuity but not right-continuity of the ceiling function ⌈·⌉ at every integer.
The exact manner of this phenomenon is dealt with in the next theorem. In
what follows, we coherently use upper case for convergents Pk/Qk of C(α),
while lower case for convergents pk/qk of α.

Theorem 3.1. Let p/q ≥ 1 be rational with gcd(p, q) = 1 and let b = a+ 1 =
⌈p/q⌉. Then the following hold.

(a) At every rational greater that 1, the function C(α) is left-continuous

but not right-continuous.

(b) limα→(p/q)+ C(α) = [0; b(zp,qba)
∞] =: C(p/q+).

(c) If q is odd, then C(p/q) > C(p/q+).
(d) If q is even, then C(p/q) < C(p/q+).

Proof. Let Pk/Qk be the convergents of C(p/q). Given ε > 0, we choose a
positive integer N so that QN > 1/

√
ε.

(a) Define δN as in (2). Then sα and sp/q = (bzp,qa)
∞ have a common prefix

of length ≥ N whenever 0 ≤ p/q − α < δN . Thus, the first N convergents of
C(α) = [0; sα] coincide with those of C(p/q) = [0; sp/q], respectively. One
deduces from Proposition 2.1 that

|C(p/q)− C(α)| =

∣

∣

∣

∣

(

C(p/q)−
PN

QN

)

−

(

C(α) −
PN

QN

)∣

∣

∣

∣

<
1

QNQN+1
<

1

(QN)2
< ε,

where the first inequality in the second line uses the fact that C(p/q)− PN

QN
and

C(α) − PN

QN
have the same sign, i.e., their product is positive.

The remaining parts below will prove that C(α) is not right-continuous at
every rational.

(b) Define δN as in (3). If 0 < α − p/q < δN , then both sα and b(zp,qba)
∞

have a common prefix of length ≥ N . A similar argument to (a) proves |C(α)−
C(p/q+)| < ε.

(c, d) Continued fractions obey the alternating lexicographic order :
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[c0; c1, c2, . . . , . . .] < [d0; d1, d2, . . . , . . .] if and only if, for some k ≥ 0,
{

c0 = d0, c1 = d1, . . . , c2k−1 = d2k−1, c2k < d2k, or

c0 = d0, c1 = d1, . . . , c2k = d2k, c2k+1 > d2k+1.

Since the word bzp,qa has length q, this fact proves the claim. �

If b = a+ 1 = ⌈α⌉, then the denominators Qk of the convergents of C(α) =
[0; sα] satisfy Qk+1 = sα(k+1)Qk +Qk−1, k ≥ 1 with Q0 = 1 and Q1 = sα(1).
Define sequences {Ak}k≥0 and {Bk}k≥0 by A0 = 1, A1 = a, B0 = 1, B1 = b,
and

Ak+1 = aAk +Ak−1, Bk+1 = bBk +Bk−1 for k ≥ 1,

respectively. Then we find

(4) Ak ≤ Qk ≤ Bk for all k ≥ 0.

A folklore to solve linear recurrences brings us the following.

Lemma 3.2. Let a sequence {Rk}k≥0 be defined by R0 = 1, R1 = c ≥ 1, and
Rk+1 = cRk +Rk−1 for k ≥ 1. Then,

Rk =
γk+1 − γk+1

√
c2 + 4

, where γ =
c+

√
c2 + 4

2
, γ =

c−
√
c2 + 4

2
.

Note that γ > 1 and −1 < γ < 0.

The behavior of C(α) at irrationals is our main result.

Theorem 3.3. The function C(α) is continuous at every irrational.

Proof. The argument used in Theorem 3.1 also works well here. But δN should
come from (1). �

The differentiability of C(α) at irrationals is more subtle. The current defi-
nition of limit yields the following kind of differentiability.

Theorem 3.4. Let α0 > 1 be irrational with b = a + 1 = ⌈α0⌉. If θ(α0) <
(

a+
√
a2+4
2

)2

, then C(α) is differentiable at α = α0, and C′(α0) = 0.

Proof. Take λ so that θ(α0) < λ <
(

a+
√
a2+4
2

)2

. Then Lemma 2.5 guarantees
⋃∞

n=N0
(λ−n, δn) = (0, δN0) for some N0 ≥ 1, where δn is adopted as in (1). If

λ−n < |α−α0| < δn, then the first n convergents of C(α) are equal to those of
C(α0), respectively. Together with (4), Lemma 3.2 derives

|C(α) − C(α0)|

|α− α0|
<

λn

QnQn+1
<

λn

(Qn)2
<

λn

(An)2
=

(a2 + 4)λn

(γn+1
1 − γn+1

1 )2

=
a2 + 4

(γ1(γ1/
√
λ)n − γ1(γ1/

√
λ)n)2

→ 0 as n → ∞,



1056 D.Y. KWON

where γ1 = a+
√
a2+4
2 . Let {αk}k≥1 be an arbitrary sequence such that αk 6= α0

and αk → α0. Then |αk − α0| eventually belongs to some interval (λ−n, δn),
and moreover n → ∞ as k → ∞. �

By Jarńık’s theorem, the set {α ∈ R : θ(α) > 1} has Hausdorff dimension
zero. Now we have the following.

Corollary 3.4.1. The function C(α) is singular. Its derivative vanishes except

on a set of Hausdorff dimension zero.

There indeed exist uncountably many irrationals at which C(α) is continuous
but not differentiable. To extract these numbers, more elaborate Diophantine
approximation is required.

Theorem 3.5. Let α0 > 1 be irrational with b = a + 1 = ⌈α0⌉. If θ(α0) >
(

b+
√
b2+4
2

)2

, then C(α) is not differentiable at α = α0.

Proof. Fix λ so that
(

b+
√
b2+4
2

)2

< λ < θ(α0), and define δn by (1). Lemma

2.5 allows us to pick an increasing integer sequence qi ր ∞ from the set

Q =
{

n ∈ N : δn ≤ ‖α0n‖
n < λ−n

}

, where, furthermore, every qi is the denom-

inator of the convergent pi/qi of α0. Since convergents are the best rational
approximation of irrational numbers [7], we have, for all i ≥ 1,

δqi =
‖α0qi‖

qi
< λ−qi and δqi < δqi−1.

For each i ≥ 1, we put

αi :=

{

α0 − δqi if ‖qiα0‖ = qiα0 − pi,

α0 +min
{

δqi+δqi−1

2 , 2δqi

}

if ‖qiα0‖ = pi − qiα0.

Then one finds that

lim
i→∞

αi = α0 and |αi − α0| ≤ 2δqi <
2

λqi
.

If ‖qiα0‖ = qiα0 − pi, then αi is rational. Accordingly, sαi
is purely periodic,

and none of the first qi− 1 letters in sαi
are changed from those in sα0 , but the

qi-th letter of sαi
is smaller than that of sα0 . On the other hand, if ‖qiα0‖ =

pi − qiα0, then one notes that

δqi < min

{

δqi + δqi−1

2
, 2δqi

}

< δqi−1.

Consequently, the qi-th letter of sαi
is greater than that of sα0 whereas all

the first qi − 1 letters remain untouched. To summarize, let us suppose sα0 =
c1c2 · · · and sαi

= d1d2 · · · . Then c1 · · · cqi−1 = d1 · · · dqi−1, but

dqi =

{

cqi − 1 if ‖qiα0‖ = qiα0 − pi,

cqi + 1 if ‖qiα0‖ = pi − qiα0.
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Let ζk and ηk be the k-th complete quotients of C(α0) and C(αi), respectively.
Then one derives

|ζqi − ηqi | ≥ [b; (ba)∞]− [a; (ab)∞] = 1 + [0; (ba)∞]− [0; (ab)∞]

> 1 +
1

b+ 1
−

1

a
= 1−

2

a(a+ 2)
≥

1

3
.

(5)

The first qi − 1 convergents of C(α0) = [0; sα0 ] coincide with those of C(αi) =
[0; sαi

], respectively. With this fact in mind, we find

|C(α0)− C(αi)|

=

∣

∣

∣

∣

ζqiPqi−1 + Pqi−2

ζqiQqi−1 +Qqi−2
−

ηqiPqi−1 + Pqi−2

ηqiQqi−1 +Qqi−2

∣

∣

∣

∣

=

∣

∣

∣

∣

ζqi(Pqi−1Qqi−2 − Pqi−2Qqi−1)− ηqi(Pqi−1Qqi−2 − Pqi−2Qqi−1)

(ζqiQqi−1 +Qqi−2)(ηqiQqi−1 +Qqi−2)

∣

∣

∣

∣

=
|ζqi − ηqi |

(ζqiQqi−1 +Qqi−2)(ηqiQqi−1 +Qqi−2)

>
1

3(b+ 2)2(Qqi−1)2
≥

1

3(b+ 2)2(Bqi−1)2
=

1

3(b+ 2)2
·

b2 + 4

(γqi
2 − γqi

2 )2
,

where γ2 = b+
√
b2+4
2 . One concludes

|C(α0)− C(αi)|

|α0 − αi|
>

b2 + 4

6(b+ 2)2
·

λqi

(γqi
2 − γqi

2 )2

=
b2 + 4

6(b+ 2)2
·

1

((γ2/
√
λ)qi − (γ2/

√
λ)qi)2

→ ∞ as i → ∞.
�

The hole between Theorems 3.4 and 3.5 cannot be filled in for the present.

In other words, when
(

a+
√
a2+4
2

)2

≤ θ(α0) ≤
(

b+
√
b2+4
2

)2

, the technique in

this paper cannot tell whether or not C(α0) is differentiable at α = α0. A more
accurate estimation on Qk is required.

The graph of C(α) is plotted in Figure 1. The upper one lets α vary in an
interval (1, 5), and the lower one in (1, 2) to see it in more detail. This graph
also allows us to verify the inequalities in Theorem 3.1(c, d). At every integer
n ≥ 1, one observes C(n) > C(n+) in the figure, which is in accordance with
Theorem 3.1 because the denominator of n = n/1 is odd. As q increases, the
discontinuous jump or fall at p/q decreases in magnitude quickly. Moreover,
the increasing or decreasing manner at p/q is subject to the parity of q. These
make the graph look like a step function.

4. Examples

Owing to Roth’s theorem, Theorem 3.4 proves that C′(α) = 0 for all alge-
braic irrational α > 1, because θ(α) = 1. Furthermore, only Liouville numbers
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Figure 1. Graph of C(α)

can be candidates for being continuous but non-differentiable points of C(α).
We will see below that such Liouville numbers are very rare.

Example 1. Let α0 = 1 +
∑∞

n=1 1/10
n!. In other words, α0 − 1 is Liouville’s

constant. Then C′(α0) = 0 because θ(α0) = 1. See [8, Example 3].

For a real x ≥ 0, its n-th tetration En(x) is defined by

E0(x) = 1, En(x) = xEn−1(x) for n ≥ 1.

That is, E1(x) = x, E2(x) = xx, E3(x) = xxx

, . . ..
Assume that t = [a0; a1, a2, . . .] is irrational with convergents {pk/qk}k≥0.

Since the denominators of convergents satisfy qk+1 = ak+1qk + qk−1, we see



A SINGULAR FUNCTION FROM STURMIAN CONTINUED FRACTIONS 1059

that ak+1qk < qk+1 < (ak+1 + 1)qk, and hence

k
∏

i=1

ai < qk <

k
∏

i=1

(ai + 1).

Example 2. A real α0 = [E0(2); E1(2), E2(2), . . .] is a Liouville number, and
C′(α0) = 0.

Proof. One readily check that α0 is a Liouville number. By Proposition 2.4,
we get

log θ(α0) = lim sup
k→∞

log qk+1

qk
≤ lim sup

k→∞

log
∏k+1

i=1 (ai + 1)
∏k

i=1 ai

≤ lim sup
k→∞

log(2k+1ak+1
k+1)

∏k
i=1 ai

= lim sup
k→∞

(k + 1)(1 + ak) log 2
∏k

i=1 ai
= 0.

�

Suppose that an irrational α0 satisfies the hypothesis of Theorem 3.5, i.e.,

θ(α0) >
(

b+
√
b2+4
2

)2

. Then Theorem 3.5 says that C(α) is not differentiable at

α0. But the proof of Theorem 3.5 cannot distinguish the following three cases:
C′(α0) = ∞; C′(α0) = −∞; C(α) is not differentiable at α0 and C′(α0) 6= ±∞.
In the next example, however, we can make a more precise statement. We need
the following lemmas that can be proved by mathematical induction.

Lemma 4.1. Suppose that an irrational t = [a0; a1, a2, . . .] has convergents

{pk/qk}k≥0. If a1 is odd, and if a2k is odd and a2k+1 is even for every k ≥ 1,
then q4k−2 is even and q4k is odd for every k ≥ 1.

Lemma 4.2. For any k ≥ 3, we have Ek−1(k + 1) > kEk−1(k).

Proof. Since Ek−1(k+2) > Ek−1(k+1), one obtains Ek−1(k+2) ≥ 1+Ek−1(k+1).
Suppose that the claim hold for k = n. One deduces

En(n+ 2) = (n+ 2)En−1(n+2) > (n+ 1)1+En−1(n+1)

= (n+ 1) · (n+ 1)En−1(n+1) = (n+ 1)En(n+ 1). �

Example 3. Let α0 = [1; E0(0), E1(1), E2(2), E3(3), . . .] = [1; 1, 1, 22, 33
3

, . . .].
Then C(α) is continuous but not differentiable at α = α0. Moreover, C′(α0) 6=
∞ and C′(α0) 6= −∞.

Proof. Proposition 2.4 leads us to compute

log θ(α0) = lim sup
k→∞

log qk+2

qk+1
≥ lim sup

k→∞

log
∏k+1

i=0 (Ei(i))
∏k

i=0(Ei(i) + 1)

≥ lim sup
k→∞

log Ek+1(k + 1)

2 · 2k(Ek(k))k
= lim sup

k→∞

log(k + 1)

2 · 2k
·
Ek(k + 1)

(Ek(k))k

= lim sup
k→∞

log(k + 1)

2 · 2k
·
(k + 1)Ek−1(k+1)

kkEk−1(k)
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≥ lim sup
k→∞

log(k + 1)

2 · 2k
·
(k + 1)kEk−1(k)

kkEk−1(k)
(∵ Lemma 4.2)

= lim sup
k→∞

log(k + 1)

2 · 2k
·

(

1 +
1

k

)kEk−1(k)

= ∞ (∵ e > 2).

Hence, θ(α0) = ∞ implies that C(α) is not differentiable at α = α0 by Theorem
3.5.

Let {pk/qk}k≥0 be the convergents of α0. Then pk/qk−α0 < 0 whenever k is
even. Thus, when k is even, the first qk−1 letters of spk/qk = (bzpk,qka)

∞ coin-
cide with those of sα0 , respectively. And their qk-th letters satisfy spk/qk(qk) <
sα0(qk). Now turning to the convergents of C(pk/qk) = [0; (bzpk,qka)

∞] and
C(α0) = [0; sα0 ], we find by Lemma 4.1,

C(p4k−2/q4k−2) < C(α0) and C(p4k/q4k) > C(α0),

which are followed by

C(p4k−2/q4k−2)− C(α0)

p4k−2/q4k−2 − α0
> 0 and

C(p4k/q4k)− C(α0)

p4k/q4k − α0
< 0.

But Theorem 3.5 guarantees a sequence {αk}k≥1 converging α0 such that

lim
k→∞

∣

∣

∣

∣

C(αk)− C(α0)

αk − α0

∣

∣

∣

∣

= ∞.

Therefore, we conclude that neither C′(α0) = ∞ nor C′(α0) = −∞. �
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