DIOPHANTINE INEQUALITY WITH FOUR SQUARES AND ONE k TH POWER OF PRIMES

Li ZHU

Abstract. Let k be an integer with $k \geq 3$. Define $h(k)=\left[\frac{k+1}{2}\right]$, $\sigma(k)=\min \left(2^{h(k)-1}, \frac{1}{2} h(k)(h(k)+1)\right)$. Suppose that $\lambda_{1}, \ldots, \lambda_{5}$ are nonzero real numbers, not all of the same sign, satisfying that $\frac{\lambda_{1}}{\lambda_{2}}$ is irrational. Then for any given real number η and $\varepsilon>0$, the inequality

$$
\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right|<\left(\max _{1 \leq j \leq 5} p_{j}\right)^{-\frac{3}{20 \sigma(k)}+\varepsilon}
$$

has infinitely many solutions in prime variables p_{1}, \ldots, p_{5}. This gives an improvement of the recent results.

1. Introduction

In 1938, Hua [5] proved that for sufficiently large integers $N \equiv 5(\bmod 24)$, the equation

$$
\begin{equation*}
N=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}+p_{5}^{2} \tag{1.1}
\end{equation*}
$$

is solvable in primes p_{1}, \ldots, p_{5}. In 2004, Harman [3] considered an analogous problem for Diophantine inequality. He showed that there are infinitely many solutions in primes p_{j} to the inequality

$$
\begin{equation*}
\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{2}+\lambda_{5} p_{5}^{2}+\eta\right|<\left(\max _{1 \leq j \leq 5} p_{j}\right)^{-\frac{1}{8}+\varepsilon} \tag{1.2}
\end{equation*}
$$

where $\lambda_{j}(1 \leq j \leq 5)$ are non-zero real numbers, not all of the same sign, with $\frac{\lambda_{1}}{\lambda_{2}}$ irrational, η real and $\varepsilon>0$.

In [7], Li and Wang considered a transformation of (1.2). Suppose that $\lambda_{i}(1 \leq i \leq 5)$ satisfied the above conditions. They proved that there are infinitely many solutions in primes p_{j} to the inequality

$$
\begin{equation*}
\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right|<\left(\max _{1 \leq j \leq 5} p_{j}\right)^{-\theta(k)+\varepsilon} \tag{1.3}
\end{equation*}
$$

Received July 22, 2018; Revised December 24, 2018; Accepted March 4, 2019.
2010 Mathematics Subject Classification. 11P32, 11P55.
Key words and phrases. prime, Davenport-Heilbronn method, sieve theory.
This work was supported by the National Natural Science Foundation of China (grant no.11771333).
where $k \geq 3$ is an integer and $\theta(k)=\left(3 k 2^{k}\right)^{-1}$. By employing the techniques in Languasco and Zaccagnini [6] and Harman [3], Mu [9] improved the value of the exponent $\theta(k)$ to $\frac{1}{16}$ for $k=3, \frac{5}{3 k 2^{k}}$ for $k=4,5$ and $\frac{40}{21 k 2^{k}}$ for $k \geq 6$. Let $[x]$ be the greatest integer not exceeding x and

$$
\begin{equation*}
h(k)=\left[\frac{k+1}{2}\right], \sigma(k)=\min \left(2^{h(k)-1}, \frac{1}{2} h(k)(h(k)+1)\right) . \tag{1.4}
\end{equation*}
$$

Based on a more detailed analysis on the minor arcs, Ge and Wang [2] showed that they can replace $\theta(k)$ in (1.3) with $\frac{1}{8 \sigma(k)}$.

Motivated by [12, Theorem 2], we can make a further improvement on the exponent in (1.3). The improvement derives from the use of the function $\rho(m)$ constructed in Harman and Kumchev [4]. However, in the proof of [12], the function $\rho(m)$ can only be available under the assumption that $\frac{\lambda_{1}}{\lambda_{2}}$ and $\frac{\lambda_{1}}{\lambda_{3}}$ are both irrational. In this paper, we introduced Brüdern [1]'s technique into the investigation of (1.3). By employing Brüdern's technique, we can use the function $\rho(m)$ without further assuming that $\frac{\lambda_{1}}{\lambda_{3}}$ is irrational and obtain the following sharper result.

Theorem. Let k be an integer with $k \geq 3$. Suppose that $\lambda_{1}, \ldots, \lambda_{5}$ are nonzero real numbers, not all of the same sign with $\frac{\lambda_{1}}{\lambda_{2}}$ irrational. Then for any given real number η and $\varepsilon>0$, the inequality

$$
\begin{equation*}
\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right|<\left(\max _{1 \leq j \leq 5} p_{j}\right)^{-\frac{3}{20 \sigma(k)}+\varepsilon} \tag{1.5}
\end{equation*}
$$

has infinitely many solutions in prime variables p_{1}, \ldots, p_{5}, where $\sigma(k)$ is defined by (1.4).

2. Notation and outline of the method

The proof of the Theorem is dependent on the Davenport-Heilbronn circle method (see [11, Chap. 11]). Throughout the paper, λ is a non-zero real number. The letter p, with or without subscript, is reserved for a prime number and k is a positive integer with $k \geq 3 . \varepsilon$ is a sufficiently small positive number and $\delta>0$ is a small constant depending on the coefficients $\lambda_{1}, \ldots, \lambda_{5}$. We use $e(\alpha)$ to denote $e^{2 \pi i \alpha}$. $[x]$ denotes the greatest integer not exceeding x. Since $\frac{\lambda_{1}}{\lambda_{2}}$ is irrational, we let $\frac{a}{q}$ be a convergent to $\frac{\lambda_{1}}{\lambda_{2}}$, with the denominator q sufficiently large. Write

$$
\begin{aligned}
& X=q^{\frac{4}{3}}, \quad h(k)=\left[\frac{k+1}{2}\right], \sigma(k)=\min \left(2^{h(k)-1}, \frac{1}{2} h(k)(h(k)+1)\right), \\
& \tau=X^{-\frac{3}{40 \sigma(k)}+3 \varepsilon}, \quad L=\log X
\end{aligned}
$$

We make use of the non-negative functions $\rho_{1}(m), \rho_{2}(m), \rho_{3}(m), \rho_{4}(m)$ constructed in [4, Section 5] (or see [12, Section 6]). It follows from [12, Section 6]
that

$$
\begin{align*}
& \rho_{1}(m)= \begin{cases}1, & \text { if } m \text { is a prime }, \\
0, & \text { otherwise },\end{cases} \\
& \rho_{1}(m) \rho_{1}(k) \geq \rho_{1}(m) \rho_{3}(k)-\rho_{2}(m) \rho_{4}(k), \tag{2.1}\\
& \sum_{u<m \leq v} \rho_{j}(m)=C_{j}(v-u) L^{-1}+O\left(X^{\frac{1}{2}} L^{-2}\right) \tag{2.2}
\end{align*}
$$

for any u and v with $(\delta X)^{\frac{1}{2}} \leq u<v \leq X^{\frac{1}{2}}$ and the constants $C_{j}(j=1,2,3,4)$ satisfy

$$
\begin{equation*}
C_{1} C_{3}-C_{2} C_{4}>0, \quad C_{1}=1 \tag{2.3}
\end{equation*}
$$

Let

$$
I_{2}=\left[(\delta X)^{\frac{1}{2}}, X^{\frac{1}{2}}\right], I_{k}=\left[(\delta X)^{\frac{1}{k}}, X^{\frac{1}{k}}\right]
$$

and

$$
\begin{align*}
S_{i}^{*}(\alpha) & =\sum_{m \in I_{2}} \rho_{i}(m) e\left(m^{2} \alpha\right) \\
S_{j}(\alpha) & =\sum_{p \in I_{j}} e\left(p^{j} \alpha\right) \log p \tag{2.4}\\
T_{j}(\alpha) & =\int_{I_{j}} e\left(t^{j} \alpha\right) d t
\end{align*}
$$

Denote

$$
K_{\tau}(\alpha)= \begin{cases}\left(\frac{\sin (\pi \tau \alpha)}{\pi \alpha}\right)^{2}, & \text { if } \alpha \neq 0 \\ \tau^{2}, & \text { if } \alpha=0\end{cases}
$$

Then

$$
\begin{align*}
K_{\tau}(\alpha) & \ll \min \left(\tau^{2},|\alpha|^{-2}\right) \tag{2.5}\\
\int_{-\infty}^{+\infty} e(x y) K_{\tau}(x) d x & =\max (0, \tau-|y|)
\end{align*}
$$

For any measurable subset \mathfrak{X} of \mathbb{R}, let

$$
\begin{equation*}
I(\tau, \eta, \mathfrak{X})=I_{1}(\tau, \eta, \mathfrak{X})-I_{2}(\tau, \eta, \mathfrak{X}), \tag{2.7}
\end{equation*}
$$

where
(2.8) $I_{1}(\tau, \eta, \mathfrak{X})=\int_{\mathfrak{X}} S_{2}\left(\lambda_{1} \alpha\right) S_{2}\left(\lambda_{2} \alpha\right) S_{1}^{*}\left(\lambda_{3} \alpha\right) S_{3}^{*}\left(\lambda_{4} \alpha\right) S_{k}\left(\lambda_{5} \alpha\right) K_{\tau}(\alpha) e(\alpha \eta) d \alpha$ and
(2.9) $I_{2}(\tau, \eta, \mathfrak{X})=\int_{\mathfrak{X}} S_{2}\left(\lambda_{1} \alpha\right) S_{2}\left(\lambda_{2} \alpha\right) S_{2}^{*}\left(\lambda_{3} \alpha\right) S_{4}^{*}\left(\lambda_{4} \alpha\right) S_{k}\left(\lambda_{5} \alpha\right) K_{\tau}(\alpha) e(\alpha \eta) d \alpha$.

From (2.1) and (2.6)-(2.9), we have

$$
\begin{align*}
I(\tau, \eta, \mathbb{R})= & \sum_{\substack{m_{3}, m_{4}, p_{1}, p_{2} \in I_{2} \\
p_{5} \in I_{k}}} \log p_{1} \log p_{2} \log p_{5}\left(\rho_{1}\left(m_{3}\right) \rho_{3}\left(m_{4}\right)-\rho_{2}\left(m_{3}\right) \rho_{4}\left(m_{4}\right)\right) \\
& \times \int_{\mathbb{R}} e\left(\left(\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} m_{3}^{2}+\lambda_{4} m_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right) \alpha\right) K_{\tau}(\alpha) d \alpha \\
= & \sum_{\substack{m_{3}, m_{4}, p_{1}, p_{2} \in I_{2} \\
p_{5} \in I_{k}}} \log p_{1} \log p_{2} \log p_{5}\left(\rho_{1}\left(m_{3}\right) \rho_{3}\left(m_{4}\right)-\rho_{2}\left(m_{3}\right) \rho_{4}\left(m_{4}\right)\right) \\
& \times \max \left(0, \tau-\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} m_{3}^{2}+\lambda_{4} m_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right|\right) \\
\leq & \sum_{\substack{m_{3}, m_{4}, p_{1}, p_{2} \in I_{2} \\
p_{5} \in I_{k}}} \log p_{1} \log p_{2} \log p_{5} \rho_{1}\left(m_{3}\right) \rho_{1}\left(m_{4}\right) \\
& \times \max \left(0, \tau-\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} m_{3}^{2}+\lambda_{4} m_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right|\right) \\
\leq & \tau N_{\tau}(X) L^{3}, \tag{2.10}
\end{align*}
$$

where $N_{\tau}(X)$ denotes the number of solutions to the inequality

$$
\begin{equation*}
\left|\lambda_{1} p_{1}^{2}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{2}+\lambda_{5} p_{5}^{k}+\eta\right|<\tau \tag{2.11}
\end{equation*}
$$

with $p_{1}, p_{2}, p_{3}, p_{4} \in I_{2}$ and $p_{5} \in I_{k}$. Let $\psi=X^{-\frac{1}{2 k}}, \xi=\tau^{-2} X^{\varepsilon}$. We now divide the real line into three parts

$$
\begin{equation*}
\mathfrak{M}=\{\alpha:|\alpha| \leq \psi\}, \mathfrak{m}=\{\alpha: \psi<|\alpha| \leq \xi\}, \mathfrak{t}=\{\alpha:|\alpha|>\xi\} . \tag{2.12}
\end{equation*}
$$

These sets are called the major arc, the minor arcs and the trivial arcs, respectively. Thus

$$
\begin{equation*}
I(\tau, \eta, \mathbb{R})=I(\tau, \eta, \mathfrak{M})+I(\tau, \eta, \mathfrak{m})+I(\tau, \eta, \mathfrak{t}) \tag{2.13}
\end{equation*}
$$

In Sections 3,4 and 5 , we will prove

$$
\begin{align*}
& I(\tau, \eta, \mathfrak{M}) \gg \tau^{2} X^{1+\frac{1}{k}} L^{-2} \\
& |I(\tau, \eta, \mathfrak{m})|=O\left(\tau^{2} X^{1+\frac{1}{k}-\varepsilon}\right) \tag{2.14}\\
& |I(\tau, \eta, \mathfrak{t})|=O\left(\tau^{2} X^{1+\frac{1}{k}-\varepsilon}\right)
\end{align*}
$$

Then we can deduce from (2.10), (2.13) and (2.14) that

$$
\begin{equation*}
N_{\tau}(X) \gg \tau X^{1+\frac{1}{k}} L^{-5} . \tag{2.15}
\end{equation*}
$$

3. The major arc \mathfrak{M}

In this section, we give the lower bound for $I(\tau, \eta, \mathfrak{M})$. We first subdivide the major arc into three parts:

$$
\begin{equation*}
\mathfrak{M}=\mathfrak{M}_{1}+\mathfrak{M}_{2}+\mathfrak{M}_{3}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathfrak{M}_{1}=\left\{\alpha:|\alpha| \leq X^{-1+\frac{5}{12 k}-\varepsilon}\right\}, \\
& \mathfrak{M}_{2}=\left\{\alpha: X^{-1+\frac{5}{12 k}-\varepsilon}<|\alpha| \leq X^{-1+\frac{1}{2 k}}\right\}, \tag{3.2}\\
& \mathfrak{M}_{3}=\left\{\alpha: X^{-1+\frac{1}{2 k}}<|\alpha| \leq X^{-\frac{1}{2 k}}\right\} .
\end{align*}
$$

Thus

$$
\begin{equation*}
I(\tau, \eta, \mathfrak{M})=I\left(\tau, \eta, \mathfrak{M}_{1}\right)+I\left(\tau, \eta, \mathfrak{M}_{2}\right)+I\left(\tau, \eta, \mathfrak{M}_{3}\right) . \tag{3.3}
\end{equation*}
$$

For brevity, let

$$
\begin{aligned}
H & =\int_{-\infty}^{+\infty} \prod_{1 \leq j \leq 4} T_{2}\left(\lambda_{j} \alpha\right) T_{k}\left(\lambda_{5} \alpha\right) K_{\tau}(\alpha) e(\eta \alpha) d \alpha, \\
V_{1}(\alpha) & =S_{2}^{*}\left(\lambda_{3} \alpha\right) S_{4}^{*}\left(\lambda_{4} \alpha\right), \quad V_{2}(\alpha)=T_{2}\left(\lambda_{1} \alpha\right) T_{2}\left(\lambda_{2} \alpha\right) T_{k}\left(\lambda_{5} \alpha\right) .
\end{aligned}
$$

It is easy to see that

$$
\begin{align*}
& I_{2}\left(\tau, \eta, \mathfrak{M}_{1}\right) \\
&= \frac{C_{2} C_{4}}{L^{2}} \int_{\mathfrak{M}_{1}} \prod_{1 \leq j \leq 4} T_{2}\left(\lambda_{j} \alpha\right) T_{k}\left(\lambda_{5} \alpha\right) K_{\tau}(\alpha) e(\eta \alpha) d \alpha \\
&+\int_{\mathfrak{M}_{1}}\left(S_{2}\left(\lambda_{1} \alpha\right)-T_{2}\left(\lambda_{1} \alpha\right)\right) S_{2}\left(\lambda_{2} \alpha\right) S_{k}\left(\lambda_{5} \alpha\right) V_{1}(\alpha) K_{\tau}(\alpha) e(\eta \alpha) d \alpha \\
&+\int_{\mathfrak{M}_{1}}\left(S_{2}\left(\lambda_{2} \alpha\right)-T_{2}\left(\lambda_{2} \alpha\right)\right) T_{2}\left(\lambda_{1} \alpha\right) S_{k}\left(\lambda_{5} \alpha\right) V_{1}(\alpha) K_{\tau}(\alpha) e(\eta \alpha) d \alpha \\
&+\int_{\mathfrak{M}_{1}}\left(S_{k}\left(\lambda_{5} \alpha\right)-T_{k}\left(\lambda_{5} \alpha\right)\right) T_{2}\left(\lambda_{1} \alpha\right) T_{2}\left(\lambda_{2} \alpha\right) V_{1}(\alpha) K_{\tau}(\alpha) e(\eta \alpha) d \alpha \\
&+\int_{\mathfrak{M}_{1}}\left(S_{2}^{*}\left(\lambda_{3} \alpha\right)-\frac{C_{2}}{L} T_{2}\left(\lambda_{3} \alpha\right)\right) S_{4}^{*}\left(\lambda_{4} \alpha\right) V_{2}(\alpha) K_{\tau}(\alpha) e(\eta \alpha) d \alpha \\
&+\frac{C_{2}}{L} \int_{\mathfrak{M}_{1}}\left(S_{4}^{*}\left(\lambda_{4} \alpha\right)-\frac{C_{4}}{L} T_{2}\left(\lambda_{4} \alpha\right)\right) T_{2}\left(\lambda_{3} \alpha\right) V_{2}(\alpha) K_{\tau}(\alpha) e(\eta \alpha) d \alpha \\
&= J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6} . \tag{3.4}
\end{align*}
$$

By the first derivative estimate for trigonometric integrals (see [10, (2.8)]), we can obtain

$$
\begin{equation*}
T_{j}(\alpha) \ll X^{\frac{1}{j}-1} \min \left(X,|\alpha|^{-1}\right) . \tag{3.5}
\end{equation*}
$$

Then we can deduce from (2.5) and (3.5) that

$$
\begin{aligned}
& \frac{C_{2} C_{4}}{L^{2}} H-J_{1} \\
< & \left|\frac{C_{2} C_{4}}{L^{2}} \int_{X^{-1+} \frac{5}{12 k}-\varepsilon}^{+\infty} \prod_{1 \leq j \leq 4} T_{2}\left(\lambda_{j} \alpha\right) T_{k}\left(\lambda_{5} \alpha\right) K_{\tau}(\alpha) e(\eta \alpha) d \alpha\right|
\end{aligned}
$$

$$
\begin{equation*}
\ll \tau^{2} L^{-2} X^{-3+\frac{1}{k}} \int_{X^{-1+\frac{5}{12 k}-\varepsilon}}^{+\infty} \frac{1}{\alpha^{5}} d \alpha=O\left(\tau^{2} L^{-2} X^{1+\frac{1}{k}-\frac{5}{3 k}+4 \varepsilon}\right) \tag{3.6}
\end{equation*}
$$

In order to estimate $J_{i}(2 \leq i \leq 6)$, we need the following lemma.
Lemma 3.1. Suppose that j is a positive integer with $j \leq k$. Then we have
(i) $\int_{\mathfrak{M}_{1}}\left|S_{j}(\lambda \alpha)\right|^{2} d \alpha \ll X^{\frac{2}{J}-1}$,
(ii) $\int_{\mathfrak{M}_{1}}\left|T_{j}(\lambda \alpha)\right|^{2} d \alpha \ll X^{\frac{2}{3}-1}$,
(iii) $\int_{\mathfrak{M}_{1}}\left|S_{j}(\lambda \alpha)-T_{j}(\lambda \alpha)\right|^{2} d \alpha \ll X^{\frac{2}{j}-1} \exp \left(-\log ^{\frac{1}{4}} X\right)$.

Proof. This is [10, Lemma 3.3].
By Cauchy's inequality, Lemma 3.1(i), (iii) and (2.5), we have

$$
\begin{align*}
J_{2}+J_{3} \ll & \tau^{2} X^{\frac{3}{2}}\left(\int_{\mathfrak{M}_{1}}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{2} d \alpha\right)^{\frac{1}{2}}\left(\int_{\mathfrak{M}_{1}}\left|\left(S_{2}\left(\lambda_{1} \alpha\right)-T_{2}\left(\lambda_{1} \alpha\right)\right)\right|^{2} d \alpha\right)^{\frac{1}{2}} \\
& +\tau^{2} X^{\frac{3}{2}}\left(\int_{\mathfrak{M}_{1}}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{2} d \alpha\right)^{\frac{1}{2}}\left(\int_{\mathfrak{M}_{1}}\left|\left(S_{2}\left(\lambda_{2} \alpha\right)-T_{2}\left(\lambda_{2} \alpha\right)\right)\right|^{2} d \alpha\right)^{\frac{1}{2}} \\
(3.7) \ll & \tau^{2} X^{\frac{3}{2}+\frac{1}{k}-\frac{1}{2}} \exp \left(-\frac{1}{2} \log ^{\frac{1}{4}} X\right)=\tau^{2} X^{1+\frac{1}{k}} \exp \left(-\frac{1}{2} \log ^{\frac{1}{4}} X\right) . \tag{3.7}
\end{align*}
$$

In a similar manner, we can obtain

$$
\begin{aligned}
J_{4} & \ll \tau^{2} X^{\frac{3}{2}}\left(\int_{\mathfrak{M}_{1}}\left|\left(S_{k}\left(\lambda_{5} \alpha\right)-T_{k}\left(\lambda_{5} \alpha\right)\right)\right|^{2} d \alpha\right)^{\frac{1}{2}}\left(\int_{\mathfrak{M}_{1}}\left|T_{2}\left(\lambda_{1} \alpha\right)\right|^{2} d \alpha\right)^{\frac{1}{2}} \\
(3.8) & \ll \tau^{2} X^{1+\frac{1}{k}} \exp \left(-\frac{1}{2} \log ^{\frac{1}{4}} X\right) .
\end{aligned}
$$

Note that $\rho_{j}(m) \geq 0$. Hence from partial summation and (2.2), we have
(3.9) $\left|S_{j}^{*}(\alpha)\right| \leq\left|S_{j}^{*}(0)\right| \ll X^{\frac{1}{2}} L^{-1},\left|S_{j}^{*}(\alpha)-\frac{C_{j}}{L} T_{2}(\alpha)\right| \ll X^{\frac{1}{2}} L^{-2}(1+|\alpha| X)$.

Then we can deduce from (2.5), (3.5) and (3.9) that

$$
\begin{align*}
J_{5}+J_{6} & \ll \tau^{2} X^{\frac{1}{2}} L^{-1}\left(\int_{0}^{1} X^{\frac{1}{2}} L^{-2}(1+|\alpha| X) \frac{X^{1+\frac{1}{k}}}{(1+X|\alpha|)^{3}} d \alpha\right) \\
& \ll \tau^{2} X^{\frac{1}{2}} L^{-1}\left(\int_{0}^{\frac{1}{X}} X^{\frac{3}{2}+\frac{1}{k}} L^{-2} d \alpha+\int_{\frac{1}{X}}^{1} \frac{X^{-\frac{1}{2}+\frac{1}{k}} L^{-2}}{\alpha^{2}} d \alpha\right) \\
& \ll \tau^{2} X^{1+\frac{1}{k}} L^{-3} \tag{3.10}
\end{align*}
$$

Now combining (3.4), (3.6), (3.7)-(3.8) and (3.10), we have

$$
\begin{equation*}
I_{2}\left(\tau, \eta, \mathfrak{M}_{1}\right)=\frac{C_{2} C_{4}}{L^{2}} H+O\left(\tau^{2} X^{1+\frac{1}{k}} L^{-3}\right) \tag{3.11}
\end{equation*}
$$

In the same manner, we can get

$$
\begin{equation*}
I_{1}\left(\tau, \eta, \mathfrak{M}_{1}\right)=\frac{C_{1} C_{3}}{L^{2}} H+O\left(\tau^{2} X^{1+\frac{1}{k}} L^{-3}\right) \tag{3.12}
\end{equation*}
$$

Furthermore, from [9, Section 3.1], we can get

$$
\begin{equation*}
H \gg \tau^{2} X^{1+\frac{1}{k}} \tag{3.13}
\end{equation*}
$$

Since $C_{1} C_{3}-C_{2} C_{4}>0$, we have

$$
\begin{aligned}
& I\left(\tau, \eta, \mathfrak{M}_{1}\right) \\
= & I_{1}\left(\tau, \eta, \mathfrak{M}_{1}\right)-I_{2}\left(\tau, \eta, \mathfrak{M}_{1}\right) \\
= & \frac{C_{1} C_{3}-C_{2} C_{4}}{L^{2}} H+O\left(\tau^{2} X^{1+\frac{1}{k}} L^{-3}\right) \gg \tau^{2} X^{1+\frac{1}{k}} L^{-2} .
\end{aligned}
$$

We next give the nontrivial upper bound for $I\left(\tau, \eta, \mathfrak{M}_{2}\right)$ and $I\left(\tau, \eta, \mathfrak{M}_{3}\right)$.
Lemma 3.2. Suppose that $k \geq 3$ is a positive integer. Then we have

$$
S_{k}\left(\lambda_{5} \alpha\right) \ll \begin{cases}X^{\frac{1}{k}\left(1-k 4^{1-k}\right)+\varepsilon}|\alpha|^{-4^{1-k}}, & X^{-1} \leq|\alpha| \leq X^{-1+\frac{1}{2 k}} \tag{3.15}\\ X^{\frac{1}{k}\left(1-\frac{1}{2} 4^{1-k}\right)+\varepsilon}, & X^{-1+\frac{1}{2 k}} \leq|\alpha| \leq X^{-\frac{1}{2 k}}\end{cases}
$$

Proof. This is [10, Corollary 3.5].
On recalling the definition of \mathfrak{M}_{2} and \mathfrak{M}_{3}, we can deduce from Lemma 3.2 that
(3.16) $\max _{\alpha \in \mathfrak{M}_{2}}\left|S_{k}\left(\lambda_{5} \alpha\right)\right| \ll X^{\frac{1}{k}-\frac{5}{12 k} 4^{1-k}+2 \varepsilon}, \quad \max _{\alpha \in \mathfrak{M}_{3}}\left|S_{k}\left(\lambda_{5} \alpha\right)\right| \ll X^{\frac{1}{k}-\frac{1}{2 k} 4^{1-k}+\varepsilon}$.

Moreover, it follows easily from [4, (iv) p. 1975] that $\max _{m \in I_{2}}\left|\rho_{i}(m)\right| \ll X^{\varepsilon}$. So, we can deduce from Hua's inequality that

$$
\begin{equation*}
\int_{0}^{1}\left|S_{2}(\alpha)^{4}\right| d \alpha \ll X^{1+\varepsilon}, \quad \int_{0}^{1}\left|S_{i}^{*}(\alpha)^{4}\right| d \alpha \ll X^{1+\varepsilon} \quad(1 \leq i \leq 4) \tag{3.17}
\end{equation*}
$$

By Hölder's inequality, (2.5) and (3.16)-(3.17), we have

$$
\begin{align*}
& \left|I_{1}\left(\tau, \eta, \mathfrak{M}_{2}\right)\right| \\
\ll & \tau^{2} \max _{\alpha \in \mathfrak{M}_{2}}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|\left(\int_{0}^{1}\left|S_{2}\left(\lambda_{1} \alpha\right)\right|^{4} d \alpha\right)^{\frac{1}{4}}\left(\int_{0}^{1}\left|S_{2}\left(\lambda_{2} \alpha\right)\right|^{4} d \alpha\right)^{\frac{1}{4}} \\
& \times\left(\int_{0}^{1}\left|S_{1}^{*}\left(\lambda_{3} \alpha\right)\right|^{4} d \alpha\right)^{\frac{1}{4}}\left(\int_{0}^{1}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|^{4} d \alpha\right)^{\frac{1}{4}} \\
\ll & \tau^{2} X^{1+\frac{1}{k}-\frac{5}{12 k} 4^{1-k}+3 \varepsilon} . \tag{3.18}
\end{align*}
$$

Similarly

$$
\begin{array}{r}
\left|I_{2}\left(\tau, \eta, \mathfrak{M}_{2}\right)\right| \ll \tau^{2} X^{1+\frac{1}{k}-\frac{5}{12 k} 4^{1-k}+3 \varepsilon}, \tag{3.19}\\
\left|I_{1}\left(\tau, \eta, \mathfrak{M}_{3}\right)\right|+\left|I_{2}\left(\tau, \eta, \mathfrak{M}_{3}\right)\right| \ll \tau^{2} X^{1+\frac{1}{k}-\frac{1}{2 k} 4^{1-k}+3 \varepsilon} .
\end{array}
$$

From (3.18)-(3.20), we have

$$
\begin{equation*}
\left|I\left(\tau, \eta, \mathfrak{M}_{2}\right)\right|+\left|I\left(\tau, \eta, \mathfrak{M}_{3}\right)\right| \ll O\left(\tau^{2} X^{1+\frac{1}{k}-\varepsilon}\right) \tag{3.21}
\end{equation*}
$$

Now combining (3.3), (3.14) and (3.21), we obtain

$$
\begin{equation*}
I(\tau, \eta, \mathfrak{M}) \gg \tau^{2} L^{-2} X^{1+\frac{1}{k}} \tag{3.22}
\end{equation*}
$$

4. The minor arcs \mathfrak{m}

In this section, we show that

$$
\begin{equation*}
|I(\tau, \eta, \mathfrak{m})| \ll\left|I_{1}(\tau, \eta, \mathfrak{m})\right|+\left|I_{2}(\tau, \eta, \mathfrak{m})\right| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} . \tag{4.1}
\end{equation*}
$$

In order to obtain (4.1), we need the following Lemmas.
Lemma 4.1. For $1 \leq i \leq 4$, we have
(4.2) $\int_{-\infty}^{+\infty}\left|S_{2}(\lambda \alpha)\right|^{4} K_{\tau}(\alpha) d \alpha \ll \tau X^{1+\varepsilon}, \int_{-\infty}^{+\infty}\left|S_{i}^{*}(\lambda \alpha)\right|^{4} K_{\tau}(\alpha) d \alpha \ll \tau X^{1+\varepsilon}$.

Proof. From [4, (iv) p. 1975], we can find that $\max _{m \in I_{2}}\left|\rho_{i}(m)\right| \ll X^{\varepsilon}$. Then Lemma 4.1 follows easily from Hua's inequality or [12, (2.5)].

Lemma 4.2. For $1 \leq i \leq 4$, we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left|S_{i}^{*}(\lambda \alpha)\right|^{2}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{2 \sigma(k)} K_{\tau}(\alpha) d \alpha \ll \tau X^{\frac{2 \sigma(k)}{k}+\varepsilon} \tag{4.3}
\end{equation*}
$$

Proof. It follows from the fact $\max _{m \in I_{2}}\left|\rho_{i}(m)\right| \ll X^{\varepsilon}$ and [2, Lemma 5.1].
Lemma 4.3. Suppose that $X^{\frac{1}{2}} \geq Z \geq X^{\frac{7}{16}+2 \varepsilon}$ and $\left|S_{2}(\lambda \alpha)\right|>Z$. Then there are integers a, q satisfying

$$
\begin{equation*}
(a, q)=1, q \leq\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z}\right)^{2},|q \lambda \alpha-a| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z}\right)^{2} . \tag{4.4}
\end{equation*}
$$

Proof. This is [8, Lemma 2.2].
Lemma 4.4. Let $i=2$ or 3. Suppose that $X^{\frac{1}{2}} \geq Z_{2} \geq X^{\frac{17}{40}+2 \varepsilon}$ and $\left|S_{i}^{*}(\lambda \alpha)\right|>$ Z_{2}. Then there are integers a_{2} and q_{2} satisfying

$$
\begin{equation*}
\left(a_{2}, q_{2}\right)=1, \quad q_{2} \leq\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2},\left|q_{2} \lambda \alpha-a_{2}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2} \tag{4.5}
\end{equation*}
$$

Proof. By Dirichlet's Theorem, there exist co-prime integers a_{2}, q_{2}, such that

$$
\begin{equation*}
1 \leq q_{2} \leq X\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{-4},\left|q_{2} \lambda \alpha-a_{2}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4} \tag{4.6}
\end{equation*}
$$

For $i=2$ or 3 , it follows from [12, (6.2)] that

$$
\begin{equation*}
\left|S_{i}^{*}(\lambda \alpha)\right| \ll X^{\frac{17}{40}+\frac{1}{2} \varepsilon}+X^{\frac{1}{2}+\frac{1}{2} \varepsilon}\left(\frac{1}{q_{2}}+\frac{q_{2}}{X}\right)^{\frac{1}{4}} \tag{4.7}
\end{equation*}
$$

Since $\left|S_{i}^{*}(\lambda \alpha)\right|>Z_{2} \geq X^{\frac{17}{40}+2 \varepsilon}$ and $X^{\frac{1}{4}+\frac{1}{2} \varepsilon} q_{2}^{\frac{1}{4}} \ll Z_{2} X^{-\frac{1}{2} \varepsilon}$, we have

$$
Z_{2}<\left|S_{i}^{*}(\lambda \alpha)\right| \ll X^{\frac{1}{2}+\frac{1}{2} \varepsilon} q_{2}^{-\frac{1}{4}}
$$

Hence

$$
\begin{equation*}
q_{2} \leq\left(\frac{X^{\frac{1}{2}+\frac{1}{2} \varepsilon}}{Z_{2}}\right)^{4},\left|q_{2} \lambda \alpha-a_{2}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4} . \tag{4.8}
\end{equation*}
$$

Combining $\left|S_{i}^{*}(\lambda \alpha)\right|>Z_{2} \geq X^{\frac{17}{40}+2 \varepsilon}$ and (4.8), we can deduce from [4, Lemma 8] (or see the proof of [4, Lemma 9]) that

$$
\begin{equation*}
Z_{2}<\left|S_{i}^{*}(\lambda \alpha)\right| \ll \frac{X^{\frac{1}{2}+\varepsilon}}{\left(q_{2}+X\left|q_{2} \lambda \alpha-a_{2}\right|\right)^{\frac{1}{2}}} . \tag{4.9}
\end{equation*}
$$

Therefore, we obtain

$$
q_{2} \leq\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2},\left|q_{2} \lambda \alpha-a_{2}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2}
$$

Lemma 4.5. Let $i=2$ or 3 and

$$
\mathfrak{N}_{1}(Z)=\left\{\alpha: \alpha \in \mathfrak{m}, Z \leq\left|S_{i}^{*}(\lambda \alpha)\right| \leq X^{\frac{1}{2}}\right\} .
$$

Then for $Z \gg X^{\frac{17}{40}+2 \varepsilon}$, we have
(i) $\int_{\mathfrak{N}_{1}(Z)}\left|S_{i}^{*}(\lambda \alpha)\right|^{2}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha \ll \tau\left(X^{\frac{4}{k}+\varepsilon}+\frac{X^{1+\frac{2}{k}+\varepsilon}}{Z^{2}}\right)$,
(ii) $\int_{\mathfrak{N}_{1}(Z)}\left|S_{i}^{*}(\lambda \alpha)\right|^{2}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{2} K_{\tau}(\alpha) d \alpha \ll \tau\left(X^{\frac{2}{k}+\varepsilon}+\frac{X^{1+\frac{1}{k}+\varepsilon}}{Z^{2}}\right)$.

Proof. It is easy to see that $K_{\tau}\left(\frac{\alpha}{\lambda}\right)=\lambda^{2} K_{\frac{\tau}{\lambda}}(\alpha)$. Hence

$$
\begin{align*}
& \int_{\mathfrak{N}_{1}(Z)}\left|S_{i}^{*}(\lambda \alpha)\right|^{2}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha \\
= & \lambda \int_{\mathfrak{N}_{2}(Z)}\left|S_{i}^{*}(\alpha)^{2} S_{k}\left(\frac{\lambda_{5}}{\lambda} \alpha\right)^{4}\right| K_{\frac{\tau}{\lambda}}(\alpha) d \alpha, \tag{4.10}
\end{align*}
$$

where

$$
\mathfrak{N}_{2}(Z)=\left\{\alpha: \frac{\alpha}{\lambda} \in \mathfrak{m}, Z \leq\left|S_{i}^{*}(\alpha)\right| \leq X^{\frac{1}{2}}\right\} .
$$

Denote

$$
\begin{align*}
\mathfrak{N}^{*}(n, Z) & =\bigcup_{1 \leq q \leq \frac{x^{1+\frac{1}{6} \varepsilon}}{Z^{2}}} \bigcup_{\substack{a=1 \\
(a, q)=1}}^{q}\left(n+\frac{a}{q}-\frac{X^{\frac{1}{6} \varepsilon}}{q Z^{2}}, n+\frac{a}{q}+\frac{X^{\frac{1}{6} \varepsilon}}{q Z^{2}}\right], \tag{4.11}\\
\mathfrak{N}^{*}(Z) & =\bigcup_{n=-\infty}^{+\infty} \mathfrak{N}^{*}(n, Z) .
\end{align*}
$$

Let $G(\alpha)$ be the function of period 1 , and defined for $\alpha \in[0,1)$ by

$$
G(\alpha)=\left\{\begin{array}{l}
(q+X|q \alpha-a|)^{-1}, \alpha \in \mathfrak{N}^{*}(Z) \bigcap[0,1) \\
0, \alpha \in[0,1) \backslash \mathfrak{N}^{*}(Z)
\end{array}\right.
$$

We can find from Lemma 4.4 and (4.9) that

$$
\begin{equation*}
\mathfrak{N}_{2}(Z) \subseteq \mathfrak{N}^{*}(Z) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S_{i}^{*}(\alpha)\right| \ll X^{\frac{1}{2}+\frac{1}{6} \varepsilon} G^{\frac{1}{2}}(\alpha) \text { for } \alpha \in \mathfrak{N}_{2}(Z) \tag{4.13}
\end{equation*}
$$

Write

$$
\begin{align*}
& \psi(v)=\sum_{\substack{p_{1}^{k}-p_{2}^{k}+p_{3}^{k}-p_{4}^{k}=v \\
(\delta X)^{\frac{1}{k}} \leq p_{1}, p_{2}, p_{3}, p_{4} \leq x^{\frac{1}{k}}}} \prod_{1 \leq j \leq 4} \log p_{j}, \tag{4.14}\\
& \Psi(\alpha)=\left|S_{k}\left(\frac{\lambda_{5}}{\lambda} \alpha\right)^{4}\right|=\sum_{v} \psi(v) e\left(\frac{\lambda_{5}}{\lambda} v \alpha\right) .
\end{align*}
$$

Then by (4.12)-(4.14), we have

$$
\begin{align*}
& \int_{\mathfrak{N}_{2}(Z)}\left|S_{i}^{*}(\alpha)^{2} S_{k}\left(\frac{\lambda_{5}}{\lambda} \alpha\right)^{4}\right| K_{\frac{\tau}{\lambda}}(\alpha) d \alpha \\
\ll & \int_{\mathfrak{N}_{2}(Z)} X^{1+\frac{1}{3} \varepsilon} G(\alpha) \Psi(\alpha) K_{\frac{\tau}{\lambda}}(\alpha) d \alpha \\
\ll & X^{1+\frac{1}{3} \varepsilon} \int_{\mathfrak{N}^{*}(Z)} G(\alpha) \Psi(\alpha) K_{\frac{\tau}{\lambda}}(\alpha) d \alpha . \tag{4.15}
\end{align*}
$$

From [1, Lemma 3] with $Q=\frac{X^{1+\frac{1}{6} \varepsilon}}{Z^{2}}$, we deduce that

$$
\begin{aligned}
& \int_{\mathfrak{N}^{*}(Z)} G(\alpha) \Psi(\alpha) K_{\frac{\tau}{\lambda}}(\alpha) d \alpha \\
\ll & \tau X^{\frac{1}{3} \varepsilon}(1+\tau)^{1+\varepsilon} X^{-1}\left(\sum_{v}|\psi(v)|+\frac{X^{1+\frac{1}{6} \varepsilon}}{Z^{2}} \sum_{\left|\frac{\lambda_{5}}{\lambda} v\right| \leq \frac{\tau}{\lambda \mid}}|\psi(v)|\right)
\end{aligned}
$$

$$
\begin{equation*}
\ll \tau X^{-1+\frac{1}{3} \varepsilon}\left(\sum_{v}|\psi(v)|+\frac{X^{1+\frac{1}{6} \varepsilon}}{Z^{2}} \sum_{|v| \leq \frac{\tau}{\left|\lambda_{5}\right|}}|\psi(v)|\right) . \tag{4.16}
\end{equation*}
$$

It is easy to find that

$$
\begin{equation*}
\sum_{v}|\psi(v)|=\Psi(0) \ll X^{\frac{4}{k}} L^{4} \tag{4.17}
\end{equation*}
$$

Since $\tau=X^{-\frac{3}{40 \sigma(k)}+3 \varepsilon}$, by Hua's inequality, we have

Combining (4.10) and (4.15)-(4.18), we have

$$
\begin{equation*}
\int_{\mathfrak{N}_{1}(Z)}\left|S_{i}^{*}(\lambda \alpha)^{2} S_{k}\left(\lambda_{5} \alpha\right)^{4}\right| K_{\tau}(\alpha) d \alpha \ll \tau\left(X^{\frac{4}{k}+\varepsilon}+\frac{X^{1+\frac{2}{k}+\varepsilon}}{Z^{2}}\right) . \tag{4.19}
\end{equation*}
$$

Now (i) is proved. On replacing $\Psi(\alpha)=\left|S_{k}\left(\frac{\lambda_{5}}{\lambda} \alpha\right)^{4}\right|$ in (4.14) with $\Psi(\alpha)=$ $\left|S_{k}\left(\frac{\lambda_{5}}{\lambda} \alpha\right)^{2}\right|$, we can obtain (ii) by the similar method leading to (4.19).

Let

$$
\begin{aligned}
& \mathfrak{m}_{1}=\left\{\alpha \in \mathfrak{m}:\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right| \leq X^{\frac{17}{40}+2 \varepsilon}\right\}, \\
& \mathfrak{m}_{2}=\left\{\alpha \in \mathfrak{m}:\left|S_{2}\left(\lambda_{1} \alpha\right)\right| \leq X^{\frac{7}{16}+2 \varepsilon},\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|>X^{\frac{17}{40}+2 \varepsilon}\right\}, \\
& \mathfrak{m}_{3}=\left\{\alpha \in \mathfrak{m}:\left|S_{2}\left(\lambda_{2} \alpha\right)\right| \leq X^{\frac{7}{16}+2 \varepsilon},\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|>X^{\frac{17}{40}+2 \varepsilon}\right\}, \\
& \mathfrak{m}_{4}=\mathfrak{m} \backslash\left(\mathfrak{m}_{1} \bigcup \mathfrak{m}_{2} \bigcup \mathfrak{m}_{3}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|I_{1}(\tau, \eta, \mathfrak{m})\right| \leq \sum_{1 \leq i \leq 4}\left|I_{1}\left(\tau, \eta, \mathfrak{m}_{i}\right)\right| \tag{4.20}
\end{equation*}
$$

Applying Hölder's inequality, Lemma 4.1 and Lemma 4.2, we have

$$
\begin{aligned}
& \left|I_{1}\left(\tau, \eta, \mathfrak{m}_{1}\right)\right| \\
\ll & \max _{\alpha \in \mathfrak{m}_{1}}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|^{\frac{1}{\sigma(k)}}\left(\int_{-\infty}^{+\infty}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}-\frac{1}{2 \sigma(k)}} \\
& \times\left(\int_{-\infty}^{+\infty}\left|S_{2}\left(\lambda_{1} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}\left(\int_{-\infty}^{+\infty}\left|S_{2}\left(\lambda_{2} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}} \\
& \times\left(\int_{-\infty}^{+\infty}\left|S_{1}^{*}\left(\lambda_{3} \alpha\right)^{4}\right| K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}
\end{aligned}
$$

$$
\times\left(\int_{-\infty}^{+\infty}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)^{2} S_{k}\left(\lambda_{5} \alpha\right)^{2 \sigma(k)}\right| K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{2 \sigma(k)}}
$$

(4.21) $\ll \tau X^{\frac{17}{40 \sigma(k)}+\frac{1}{4}-\frac{1}{2 \sigma(k)}+\frac{3}{4}+\frac{1}{k}+2 \varepsilon} \ll \tau X^{1+\frac{1}{k}-\frac{3}{40 \sigma(k)}+2 \varepsilon} \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon}$.

Let $\mathfrak{N}_{1}(Z)$ be defined as in Lemma 4.5. When $3 \leq k \leq 13$, we can find from Hölder's inequality, Lemma 4.1 and Lemma 4.5(ii) that

$$
\left.\begin{array}{rl}
& \left|I_{1}\left(\tau, \eta, \mathfrak{m}_{2}\right)\right| \\
\ll & \max _{\alpha \in \mathfrak{m}_{2}}\left|S_{2}\left(\lambda_{1} \alpha\right)\right|\left(\int_{\mathfrak{N}_{1}\left(X^{\frac{17}{40}+2 \varepsilon}\right)}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|^{2}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{2} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{2}} \\
& \times\left(\int_{-\infty}^{+\infty}\left|S_{1}^{*}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}\left(\int_{-\infty}^{+\infty}\left|S_{2}\left(\lambda_{2} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}} \\
(4.22)< & \tau\left(X^{\frac{7}{16}+\frac{1}{2}+3 \varepsilon}\left(X^{\frac{1}{k}+\varepsilon}+X^{\frac{3}{40}+\frac{1}{2 k}+\varepsilon}\right)\right. \\
\ll \frac{1}{16}+4 \varepsilon
\end{array} X^{1+\frac{1}{k}-\frac{1}{2 k}+\frac{1}{80}+4 \varepsilon}\right) \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} .
$$

When $k \geq 14$, let

$$
\begin{aligned}
& \mathfrak{m}_{5}=\left\{\alpha \in \mathfrak{m}_{2}:\left|S_{2}\left(\lambda_{1} \alpha\right)\right| \leq X^{\frac{7}{16}+2 \varepsilon}, \quad X^{\frac{17}{40}+2 \varepsilon}<\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|<X^{\frac{1}{2}-\frac{1}{k}+2 \varepsilon}\right\} \\
& \mathfrak{m}_{6}=\left\{\alpha \in \mathfrak{m}_{2}:\left|S_{2}\left(\lambda_{1} \alpha\right)\right| \leq X^{\frac{7}{16}+2 \varepsilon}, \quad X^{\frac{1}{2}-\frac{1}{k}+2 \varepsilon} \leq\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|<X^{\frac{1}{2}}\right\}
\end{aligned}
$$

Since $\mathfrak{m}_{2}=\mathfrak{m}_{5} \bigcup \mathfrak{m}_{6}$, we have

$$
\begin{equation*}
I_{1}\left(\tau, \eta, \mathfrak{m}_{2}\right)=I_{1}\left(\tau, \eta, \mathfrak{m}_{5}\right)+I_{1}\left(\tau, \eta, \mathfrak{m}_{6}\right) \tag{4.23}
\end{equation*}
$$

By the similar method leading to (4.22), we can get

$$
\begin{align*}
& \left|I_{1}\left(\tau, \eta, \mathfrak{m}_{6}\right)\right| \\
\ll & \max _{\alpha \in \mathfrak{m}_{6}}\left|S_{2}\left(\lambda_{1} \alpha\right)\right|\left(\int_{\mathfrak{N}_{1}\left(X^{\frac{1}{2}-\frac{1}{k}+2 \varepsilon}\right)}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right|^{2}\left|S_{k}\left(\lambda_{5} \alpha\right)\right|^{2} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{2}} \\
& \times\left(\int_{-\infty}^{+\infty}\left|S_{1}^{*}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}\left(\int_{-\infty}^{+\infty}\left|S_{2}\left(\lambda_{2} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}} \\
\ll & \tau X^{\frac{7}{16}+\frac{1}{2}+3 \varepsilon}\left(X^{\frac{2}{k}+\varepsilon}+X^{\frac{3}{k}+\varepsilon}\right)^{\frac{1}{2}} \\
\ll & \tau X^{1+\frac{1}{k}-\frac{1}{16}+\frac{1}{2 k}+4 \varepsilon} \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} . \tag{1.2x}
\end{align*}
$$

In order to estimate $I_{1}\left(\tau, \eta, \mathfrak{m}_{5}\right)$, we subdivide \mathfrak{m}_{5} into disjoint sets $S(Z)$ such that for $\alpha \in S(Z)$, we have

$$
Z<\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)\right| \leq 2 Z
$$

where $Z=2^{k_{1}} X^{\frac{17}{40}+2 \varepsilon}$ for some positive integers k_{1}. Then we can deduce from Lemma 4.5(i) and the dyadic arguments that

$$
\int_{\mathfrak{m}_{5}}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)^{4} S_{k}\left(\lambda_{5} \alpha\right)^{4}\right| K_{\tau}(\alpha) d \alpha
$$

$$
\begin{aligned}
& \ll \max _{X^{\frac{17}{40}+2 \varepsilon}<Z \leq X^{\frac{1}{2}-\frac{1}{k}+2 \varepsilon}} Z^{2} L \int_{S(Z)}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)^{2} S_{k}\left(\lambda_{5} \alpha\right)^{4}\right| K_{\tau}(\alpha) d \alpha \\
& \ll \max _{X^{\frac{17}{40}+2 \varepsilon}<Z \leq X^{\frac{1}{2}-\frac{1}{k}+2 \varepsilon}} Z^{2} L \int_{\mathfrak{N}_{1}(Z)}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)^{2} S_{k}\left(\lambda_{5} \alpha\right)^{4}\right| K_{\tau}(\alpha) d \alpha \\
& \ll \max _{X^{\frac{17}{40}+2 \varepsilon<Z \leq X^{\frac{1}{2}-\frac{1}{k}+2 \varepsilon}}} \tau Z^{2} L\left(\frac{X^{1+\frac{2}{k}+\varepsilon}}{Z^{2}}+X^{\frac{4}{k}+\varepsilon}\right) \ll \tau X^{1+\frac{2}{k}+2 \varepsilon} .
\end{aligned}
$$

So by Hölder's inequality, Lemma 4.1 and (4.25), we have

$$
\begin{aligned}
& \left|I_{1}\left(\tau, \eta, \mathfrak{m}_{5}\right)\right| \\
\ll & \left(\int_{\mathfrak{m}_{5}}\left|S_{3}^{*}\left(\lambda_{4} \alpha\right)^{4} S_{k}\left(\lambda_{5} \alpha\right)^{4}\right| K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}\left(\int_{-\infty}^{+\infty}\left|S_{1}^{*}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}} \\
& \times\left(\int_{-\infty}^{+\infty}\left|S_{2}\left(\lambda_{1} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}\left(\int_{-\infty}^{+\infty}\left|S_{2}\left(\lambda_{2} \alpha\right)\right|^{4} K_{\tau}(\alpha) d \alpha\right)^{\frac{1}{4}}
\end{aligned}
$$

$$
\begin{equation*}
\ll \tau X^{\frac{1}{4}+\frac{1}{2 k}+\frac{3}{4}+2 \varepsilon}=\tau X^{1+\frac{1}{k}-\frac{1}{2 k}+2 \varepsilon} \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} . \tag{4.26}
\end{equation*}
$$

Combining (4.22)-(4.24) and (4.26), we get

$$
\begin{equation*}
\left|I_{1}\left(\tau, \eta, \mathfrak{m}_{2}\right)\right| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{4.27}
\end{equation*}
$$

By the same argument leading to (4.27), we can get

$$
\begin{equation*}
\left|I_{1}\left(\tau, \eta, \mathfrak{m}_{3}\right)\right| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{4.28}
\end{equation*}
$$

Now we consider the range $\mathfrak{m}_{4}=\mathfrak{m} \backslash\left(\mathfrak{m}_{1} \bigcup \mathfrak{m}_{2} \bigcup \mathfrak{m}_{3}\right)$. Note that for $\alpha \in \mathfrak{m}_{4}$, we have

$$
\left|S_{2}\left(\lambda_{1} \alpha\right)\right|>X^{\frac{7}{16}+2 \varepsilon}, \quad\left|S_{2}\left(\lambda_{2} \alpha\right)\right|>X^{\frac{7}{16}+2 \varepsilon} .
$$

So we can divide \mathfrak{m}_{4} into disjoint sets $S\left(Z_{1}, Z_{2}, y\right)$ such that for $\alpha \in S\left(Z_{1}, Z_{2}, y\right)$, we have

$$
\begin{equation*}
Z_{1}<\left|S_{2}\left(\lambda_{1} \alpha\right)\right| \leq 2 Z_{1}, \quad Z_{2}<\left|S_{2}\left(\lambda_{2} \alpha\right)\right| \leq 2 Z_{2}, \quad y<|\alpha| \leq 2 y \tag{4.29}
\end{equation*}
$$

where $Z_{1}=2^{t_{1}} X^{\frac{7}{16}+2 \varepsilon}, Z_{2}=2^{t_{2}} X^{\frac{7}{16}+2 \varepsilon}$ and $y=2^{r} X^{-\frac{1}{2 k}}$ for some positive integers t_{1}, t_{2} and r. Thus by Lemma 4.3, there are co-prime integers $\left(a_{1}, q_{1}\right),\left(a_{2}, q_{2}\right)$ with

$$
\begin{align*}
& q_{1} \leq\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2},\left|q_{1} \lambda_{1} \alpha-a_{1}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}, \\
& q_{2} \leq\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2},\left|q_{2} \lambda_{2} \alpha-a_{2}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2} . \tag{4.30}
\end{align*}
$$

We remark that $a_{1} a_{2} \neq 0$, since otherwise we have $\alpha \in \mathfrak{M}$. Furthermore, we subdivide $S\left(Z_{1}, Z_{2}, y\right)$ into sets $S\left(Z_{1}, Z_{2}, y, Q_{1}, Q_{2}\right)$, where $Q_{j}<q_{j} \leq 2 Q_{j}$ on each set. Then

$$
\begin{align*}
\left|a_{2} q_{1} \frac{\lambda_{1}}{\lambda_{2}}-a_{1} q_{2}\right| & =\left|\frac{a_{2}\left(q_{1} \lambda_{1} \alpha-a_{1}\right)+a_{1}\left(a_{2}-q_{2} \lambda_{2} \alpha\right)}{\lambda_{2} \alpha}\right| \\
& \ll Q_{2} X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}+Q_{1} X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2} \\
& \ll \frac{X^{1+4 \varepsilon}}{Z_{1}^{2} Z_{2}^{2}} \ll X^{-\frac{3}{4}-\varepsilon} . \tag{4.31}
\end{align*}
$$

Note that $q=X^{\frac{3}{4}}$. Thus

$$
\begin{equation*}
\left|a_{2} q_{1} \frac{\lambda_{1}}{\lambda_{2}}-a_{1} q_{2}\right|=o\left(q^{-1}\right) . \tag{4.32}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left|a_{2} q_{1}\right| \ll y Q_{1} Q_{2} . \tag{4.33}
\end{equation*}
$$

Hence, if $\left|a_{2} q_{1}\right|$ takes R distinct values, we could deduce the existence of n satisfying

$$
\begin{equation*}
\left\|n \frac{\lambda_{1}}{\lambda_{2}}\right\| \ll X^{-\frac{3}{4}-\varepsilon}, \quad n \ll \frac{y Q_{1} Q_{2}}{R} . \tag{4.34}
\end{equation*}
$$

This would contradict $\frac{a}{q}$ being a convergent to $\frac{\lambda_{1}}{\lambda_{2}}$ if q is sufficiently large, unless

$$
\begin{equation*}
R \ll \frac{y Q_{1} Q_{2}}{q} . \tag{4.35}
\end{equation*}
$$

By (4.31) and the well known bound on the divisor function, we find that each value of $a_{2} q_{1}$ corresponds to $O\left(X^{\varepsilon}\right)$ values of a_{2}, q_{1} and a_{1}, q_{2}. Then we obtain that each set of $S\left(Z_{1}, Z_{2}, y, Q_{1}, Q_{2}\right)$ is made up of $O\left(R X^{\varepsilon}\right)$ intervals of length

$$
\begin{equation*}
\min \left(\frac{1}{Q_{1} X}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}, \frac{1}{Q_{2} X}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2}\right) \tag{4.36}
\end{equation*}
$$

Let \mathfrak{L} denote such a set $S\left(Z_{1}, Z_{2}, y, Q_{1}, Q_{2}\right)$. Note that

$$
\begin{align*}
\int_{\mathfrak{L}} 1 d \alpha & \ll y Q_{1} Q_{2} q^{-1} \min \left(\frac{1}{Q_{1} X}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}, \frac{1}{Q_{2} X}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2}\right) \\
& \ll \frac{y X^{1+4 \varepsilon}}{q Z_{1}^{2} Z_{2}^{2}} . \tag{4.37}
\end{align*}
$$

Recall that $\tau=X^{-\frac{3}{40 \sigma(k)}+3 \varepsilon}, y \ll \xi=\tau^{-2} X^{\varepsilon}, q=X^{\frac{3}{4}}$ and $Z_{2} \gg X^{\frac{7}{16}+2 \varepsilon}$, $Z_{1} \gg X^{\frac{7}{16}+2 \varepsilon}$ and $K_{\tau}(\alpha) \ll \tau^{2}$. Hence

$$
\begin{equation*}
\int_{\mathfrak{L}} 1 d \alpha \ll X^{\frac{3}{20 \sigma(k)}-\frac{3}{2}} \tag{4.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{1}(\tau, \eta, \mathfrak{L})\right| \ll \tau^{2} X^{2+\frac{1}{k}}\left(\int_{\mathfrak{L}} 1 d \alpha\right) \ll \tau^{2} X^{\frac{3}{20 \sigma(k)}+\frac{1}{k}+\frac{1}{2}} \tag{4.39}
\end{equation*}
$$

Summing over all possible values of $y, Q_{1}, Q_{2}, Z_{1}, Z_{2}$, we get

$$
\begin{equation*}
\left|I_{1}\left(\tau, \eta, \mathfrak{m}_{4}\right)\right| \ll\left|I_{1}(\tau, \eta, \mathfrak{L})\right| L^{5} \ll \tau^{2} X^{\frac{3}{20 \sigma(k)}+\frac{1}{k}+\frac{1}{2}+\varepsilon} \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{4.40}
\end{equation*}
$$

Combining (4.20)-(4.21), (4.27)-(4.28) and (4.40), we have

$$
\begin{equation*}
\left|I_{1}(\tau, \eta, \mathfrak{m})\right| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{4.41}
\end{equation*}
$$

By the similar method leading to (4.41), we can get

$$
\begin{equation*}
\left|I_{2}(\tau, \eta, \mathfrak{m})\right| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{4.42}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
|I(\tau, \eta, \mathfrak{m})| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{4.43}
\end{equation*}
$$

5. The trivial arcs \mathfrak{t}

By the same argument as in [9, Section 4], we can get

$$
\begin{equation*}
|I(\tau, \eta, \mathfrak{t})| \leq\left|I_{1}(\tau, \eta, \mathfrak{t})\right|+\left|I_{2}(\tau, \eta, \mathfrak{t})\right| \ll \tau^{2} X^{1+\frac{1}{k}-\varepsilon} \tag{5.1}
\end{equation*}
$$

Combining (2.10), (2.13), (3.22), (4.43) and (5.1), we get

$$
\begin{equation*}
I(\tau, \eta, \mathbb{R}) \gg \tau^{2} X^{1+\frac{1}{k}} L^{-2}, \quad N_{\tau}(X) \gg \tau X^{1+\frac{1}{k}} L^{-5} \tag{5.2}
\end{equation*}
$$

Since $\frac{\lambda_{1}}{\lambda_{2}}$ is irrational, there are infinitely many pairs of co-prime integers q and a such that $\frac{a}{q}$ is a convergent to $\frac{\lambda_{1}}{\lambda_{2}}$. Then we have $X=q^{\frac{4}{3}} \rightarrow+\infty$, as $q \rightarrow+\infty$. This imply that (5.2) holds for infinite sequence of values of X. Thus the proof of the Theorem is completed.
Acknowledgments. We thank the referees for their time and comments. The Author would like to express the most sincere gratitude to Professor Yingchun Cai for his valuable and constant encouragement.

References

[1] J. Brüdern, The Davenport-Heilbronn Fourier transform method, and some Diophantine inequalities, in Number theory and its applications (Kyoto, 1997), 59-87, Dev. Math., 2, Kluwer Acad. Publ., Dordrecht, 1999.
[2] W. Ge and T. Wang, On Diophantine problems with mixed powers of primes, Acta Arith. 182 (2018), no. 2, 183-199.
[3] G. Harman, The values of ternary quadratic forms at prime arguments, Mathematika 51 (2004), no. 1-2, 83-96 (2005).
[4] G. Harman and A. Kumchev, On sums of squares of primes II, J. Number Theory 130 (2010), no. 9, 1969-2002.
[5] L.-K. Hua, Some results in the additive prime-number theory, Quart. J. Math. Oxford Ser. (2) 9 (1938), no. 1, 68-80.
[6] A. Languasco and A. Zaccagnini, A Diophantine problem with a prime and three squares of primes, J. Number Theory 132 (2012), no. 12, 3016-3028.
[7] W. Li and T. Wang, Diophantine approximation with four squares and one K th power of primes, J. Math. Sci. Adv. Appl. 6 (2010), no. 1, 1-16.
[8] Z. Liu, Diophantine approximation by unlike powers of primes, Int. J. Number Theory 13 (2017), no. 9, 2445-2452.
[9] Q. Mu, Diophantine approximation with four squares and one k th power of primes, Ramanujan J. 39 (2016), no. 3, 481-496.
[10] Q. Mu and Y. Qu, A note on Diophantine approximation by unlike powers of primes, Int. J. Number Theory 14 (2018), no. 6, 1651-1668.
[11] R. C. Vaughan, The Hardy-Littlewood Method, second edition, Cambridge Tracts in Mathematics, 125, Cambridge University Press, Cambridge, 1997.
[12] Y. Wang and W. Yao, Diophantine approximation with one prime and three squares of primes, J. Number Theory 180 (2017), 234-250.

Li Zhu
School of Mathematical Sciences
Tongji University
Shanghai, 200092, P. R. China
Email address: zhuli15@tongji.edu.cn

