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HOMOGENEITY AND SYMMETRY ON ALMOST

KENMOTSU 3-MANIFOLDS

Yaning Wang

Abstract. In this paper, we give some classifications of almost Ken-
motsu 3-manifolds under homogeneity and some symmetry conditions.

1. Introduction

In literature, Kenmotsu manifolds were firstly introduced and investigated
by K. Kenmotsu [15] in 1972. Such manifolds were generalized to almost Ken-
motsu manifolds by Janssens and Vanhecke [25] in 1981. It is known from
[15] that any Kenmotsu manifold is locally isometric to a warped product of
a line and a Kähler manifold. Conversely, a warped product of a line and a
Kähler manifold admits a Kenmotsu structure. One of reasons that people
are interested in Kenmotsu geometry lies in the fact that a Kenmotsu mani-
fold of constant sectional curvature is locally isometric to the hyperbolic space
H

2n+1(−1), n ≥ 1 (see [15]). This result was generalized to almost Kenmotsu
manifolds (see [11]), namely an almost Kenmotsu manifold of constant sectional
curvature is locally isometric to H

2n+1(−1), n ≥ 1. This means that in some
sense geometry of Kenmotsu manifolds corresponds to that of the hyperbolic
spaces.

Among many interesting results in the framework of geometry of Kenmotsu
manifolds (cf. Pitiş [20]), Kenmotsu [15] proved that a Kenmotsu manifold
is locally symmetric if and only if it is semi-symmetric and this is equivalent
to that the manifold is of constant sectional curvature −1. As a generaliza-
tion of local symmetry, the notion of φ-symmetry was introduced by Takahashi
[24] in the study of Sasakian manifolds. In recent years, many authors stud-
ied Kenmotsu manifolds under certain geometric conditions weaker than local
symmetry such as (local) φ-symmetry and (local) φ-recurrence. For examples,
De, Yildiz and Yalniz [10] proved that a 3-dimensional normal almost contact
metric manifold is locally φ-symmetric if and only if the scalar curvature is a
constant provided that both α and β are constants. This result can be regarded
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as an extension of the above Kenmotsu’s result since local symmetry implies
φ-recurrence. Also, De and Pathak [9] studied locally φ-symmetric Kenmotsu
3-manifolds.

After almost Kenmotsu manifolds were introduced in [25], there were few
results regarding such manifolds in a long time. Dileo and Pastore in [11, 12]
started to study such manifolds and obtained some important results. For
example, they proved that a locally symmetric (2n + 1)-dimensional almost
Kenmotsu manifold satisfying R(X,Y )ξ = 0 for any vector fields X,Y orthog-
onal to the Reeb vector field ξ is locally isometric to either the hyperbolic space
H

2n+1(−1) or the Riemannian product Hn+1(−4)× R
n. Applying this result,

the present author jointly with X . Liu in [30] proved that a locally symmetric
CR-integrable almost Kenmotsu manifold of dimension 2n + 1, n > 1, is lo-
cally isometric to either H2n+1(−1) or Hn+1(−4)× R

n. Very recently, Cho [7]
and the present author [26] independently obtained that a locally symmetric
almost Kenmotsu 3-manifold is locally isometric to either the hyperbolic space
H

3(−1) or the product space H
2(−4)× R. Semi-symmetric almost Kenmotsu

manifolds satisfying some nullity conditions were studied in [29].
In this paper, we continue to study classification problem of almost Ken-

motsu 3-manifolds under some additional conditions such as homogeneity, φ-
symmetry and semi-symmetry. Our main results can be viewed as some gener-
alizations of the corresponding results obtained by Cho [7], De et al. [9–11] and
Wang [26]. Some concrete examples illustrating our main results are given.

2. Almost Kenmotsu manifolds

An almost contact structure on a smooth differentiable manifold M2n+1 of
dimension 2n+ 1 means a triple (φ, ξ, η) satisfying

(2.1) φ2 = −id + η ⊗ ξ, η(ξ) = 1,

where φ is a (1, 1)-type tensor field, ξ is a vector field called the Reeb vector field
and η is a 1-form called the almost contact 1-form. If there exists a Riemannian
metric g on an almost contact manifold M2n+1 such that

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X,Y , then M2n+1 is said to be an almost contact metric

manifold and g is said to be a compatible metric with respect to the almost
contact structure.

From Janssens and Vanhecke [25], in this paper by an almost Kenmotsu

manifold we mean an almost contact metric manifold (M2n+1, φ, ξ, η, g) sat-
isfying dη = 0 and dΦ = 2η ∧ Φ, where the fundamental 2-form Φ of the
almost contact metric manifold M2n+1 is defined by Φ(X,Y ) = g(X,φY ) for
any vector fields X and Y on M2n+1. We consider the product M2n+1 × R of
an almost contact metric manifold M2n+1 and R and define on it an almost
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complex structure J by

J

(

X, f
d

dt

)

=

(

φX − fξ, η(X)
d

dt

)

,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and
f is a C∞-function on M2n+1 ×R. We denote by [φ, φ] the Nijenhuis tensor of
φ. If

[φ, φ] = −2dη ⊗ ξ

holds, then the almost contact metric structure is said to be normal. A normal
almost Kenmotsu manifold is said to be a Kenmotsu manifold (cf. [15,25]). It
is well-known that an almost Kenmotsu manifold is a Kenmotsu manifold if
and only if

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX

for any vector fields X,Y .
LetM2n+1 be an almost Kenmotsu manifold. We consider three tensor fields

l = R(·, ξ)ξ, h = 1
2Lξφ and h′ = h ◦ φ on M2n+1, where R is the Riemannian

curvature tensor of g and L is the Lie differentiation. From Dileo and Pastore
[11,12], we know that the three (1, 1)-type tensor fields l, h′ and h are symmetric
and satisfy hξ = 0, lξ = 0, trh = 0, tr(h′) = 0 and hφ+ φh = 0 and

(2.3) ∇Xξ = X − η(X)ξ + h′X,

(2.4) φlφ− l = 2(h2 − φ2),

(2.5) ∇ξh = −φ− 2h− φh2 − φl,

(2.6) tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− trh2,

for any vector fields X,Y , where S, Q and ∇ denote the Ricci curvature ten-
sor, the Ricci operator with respect to g and the Levi-Civita connection of g,
respectively. Throughout the paper, we denote by D the contact distribution
{ξ}⊥ and all manifolds are assumed to be smooth and connected.

3. Homogeneity on almost Kenmotsu 3-manifolds

In 1958, Boothby and Wang [3] introduced the notion of homogeneous
contact manifolds. Later, such notion was generalized on contact metric 3-
manifolds (see [18]) and almost cosymplectic 3-manifolds (see [19]). In general,
an almost contact metric manifold (M,φ, ξ, η, g) is said to be homogeneous if
there exists a connected Lie group acting transitively as a group of diffeomor-
phisms on M and leaving the almost contact form η invariant.

Recall that a Lie group G is said to be unimodular if its left invariant Haar
measure is also right invariant. A Lie group G is unimodular if and only if the
endomorphism adX : g → g given by adX(Y ) = [X,Y ] has trace equal to zero
for any X ∈ g, where g denotes the Lie algebra associated to G.
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Theorem 3.1. A simply connected almost Kenmotsu 3-manifold M is homoge-

neous if and only if it is isometric to a non-unimodular Lie group endowed with

a left invariant almost Kenmotsu structure. More precisely, the Lie algebra of

such Lie group is one of the following types:

A1 [e0, e1] = −e1, [e1, e2] = 0, [e2, e0] = e2. In this case, M is isometric

to the hyperbolic 3-space H
3(−1) endowed with a Kenmotsu structure.

B1 [e0, e1] = −e1 + (λ+ a)e2, [e1, e2] = 0, [e2, e0] = (a− λ)e1 + e2, where
λ, a ∈ R and λ 6= 0. In this case, M is non-Kenmotsu. In particular,

if λ = 1 and a = 0, M is isometric to the product space H
2(−4)× R.

B2 [e0, e1] = −e1 + (λ+ a)e2, [e1, e2] = be1 − ce2, [e2, e0] = (a−λ)e1 + e2,
where λ, a, b, c ∈ R, λ 6= 0, b = (λ − a)c 6= 0 and c = (λ + a)b 6= 0. In

this case, M is non-Kenmotsu.

In the last two types, λ is the positive eigenvalue of the operator h.

Proof. Let (M,φ, ξ, η, g) be a simply connected homogeneous almost Kenmotsu
3-manifold. Let G be the Lie group acting transitively as a group of isometries
which leaves the almost contact form η invariant. SinceM is a simply connected
homogeneous Riemannian 3-manifold, following Sekigawa [17] we see that M
is isometric to either a Lie group endowed with a left invariant Riemannian
metric or a symmetric space.

For the first case, following a standard statement shown in [18, p. 247] or
[19, p. 54] (see also [21]) we can consider M as a Lie group G and (φ, ξ, η, g)
as a left invariant almost Kenmotsu structure. For simplicity, here we omit
proof of the above statement. On the other hand, it was proved that a left
invariant almost contact metric structure on a 3-dimensional Lie group G is
almost Kenmotsu if and only if G is non-unimodular and its Lie algebra is one
of the following two types (for more details see [4, p. 1379] and [4, Theorem
4.11]):

(II) [ξ, e] = e + βφe, [e, φe] = 0, [ξ, φe] = γe+ φe.

(IV) [ξ, e] =
a1 + a3

a5
Λ, [e, φe] = −Λ, [ξ, φe] =

a4(a1 + a3)

a25
Λ,

where Λ = a4e + a5φe, a1, a4, a5 6= 0, {ξ, e, φe} are eigenvector fields of h
corresponding eigenvalues {0, λ,−λ}. One can check that the above two Lie
algebras are the same with the last two types in Theorem 3.1.

For the later case, note that a locally symmetric almost Kenmotsu 3-manifold
is locally isometric to either H3(−1) or H2(−4)×R (see [7,26]). Also, a simple
calculation shows that H3(−1) corresponds to the simply connected metric Lie
group whose Lie algebra is given by [ξ, e] = −e, [e, φe] = 0, [φe, ξ] = φe and
H

2(−4) × R corresponds to a simply connected metric Lie group whose Lie
algebra is given by [ξ, e] = −e+φe, [e, φe] = 0, [φe, ξ] = −e+φe. One observes
that the later Lie algebra is just of type B1 for λ = 1 and a = 0 (for more
details see also [27, 28]).
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We refer the reader to [6, p. 31] for the standard construction of Kenmotsu
structure on a hyperbolic space. On the other hand, for the construction of the
almost Kenmotsu structures defined on a non-unimodular Lie group we refer
the reader to [12]. This completes the proof. �

An almost Kenmotsu 3-manifold is Kenmotsu if and only if h vanishes (see
Proposition 4.1). From (2.4) and (2.6) we see that on a Kenmotsu 3-manifold
there holds Qξ = −2ξ. For a non-Kenmotsu almost Kenmotsu structure of
type B1 in Theorem 3.1 we observe also that Qξ is a constant multiple of ξ.
Thus, we have

Remark 3.1. The Reeb vector field of almost Kenmotsu 3-manifolds for types
A1 and B1 is an eigenvector field of the Ricci operator. However, this does not
hold for type B2.

Remark 3.2. For simplicity, we state that a simply connected almost Kenmotsu
3-manifold is homogeneous if and only if it is isometric to a non-unimodular
Lie group whose Lie algebra G is given by

[e0, e1] = −e1 + (λ+ a)e2, [e1, e2] = be1 − ce2, [e2, e0] = (a− λ)e1 + e2,

where λ, a, b, c ∈ R. The type A1 corresponds to G satisfying λ = a = b = c =
0; the type B1 corresponds to G satisfying b = c = 0 and λ 6= 0 and the type
B2 corresponds to G satisfying λ, b, c 6= 0.

4. Almost Kenmotsu 3-manifolds and local φ-symmetry

In this section, we aim to give some local classifications of almost Kenmotsu
3-manifolds under condition of local φ-symmetry. First, we need the following
proposition.

Proposition 4.1 ([11]). An almost Kenmotsu 3-manifold is Kenmotsu if and

only if h vanishes.

The notion of local φ-symmetry is defined as the following.

Definition 4.1 ([24]). An almost contact metric manifold is said to be locally
φ-symmetric if

φ2(∇φV R)(φX, φY )φZ = 0

for any vector fields X,Y, Z, V .

It is clear that local symmetry (i.e., ∇R = 0) implies local φ-symmetry, but
in general the converse is not necessarily true. The following result shows that
the converse mentioned above is not true even in Kenmotsu 3-manifolds.

Theorem 4.1. A Kenmotsu 3-manifold is locally φ-symmetric if and only if

it is locally isometric to the warped product R×cet N(k), where N(k) denotes

a Riemannian 2-manifold of constant Gaussian curvature k.
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Proof. We observe from De and Pathak [9, Eq. (22)] that a Kenmotsu 3-
manifold is locally φ-symmetric if and only if

φ2(∇V R)(X,Y )Z = −
V (r)

2
(g(Y, Z)X − g(X,Z)Y ) = 0

for any vector fields X,Y, Z, V orthogonal to ξ, where r is the scalar curvature.
Here we omit the proof of the above relation for simplicity. The above relation
implies that the scalar curvature r is invariant along the contact distribution
{ξ}⊥. On the other hand, J. Inoguchi in [13] proved that a Kenmotsu 3-
manifold is locally isometric to the warped product R×cet N(k) if and only if
grad(r) ∈ {ξ}R, where c denotes a constant. This completes the proof. �

Next we study local φ-symmetry on almost Kenmotsu 3-manifolds satisfy-
ing ∇ξh = 2aφh, a ∈ R. Almost contact metric 3-manifolds satisfying this
condition were studied in [1, 27, 28]. We now construct an example of almost
Kenmotsu 3-manifolds satisfying such condition.

FromMilnor [16], ifG is a three-dimensional non-unimodular Lie group, then
there exists a left invariant local orthonormal frame fields {e1, e2, e3} satisfying

(4.1) [e1, e2] = αe2 + βe3, [e2, e3] = 0, [e1, e3] = γe2 + δe3

and α+δ = 2, where α, β, γ, δ ∈ R. We define a metric g on G by g(ei, ej) = δij
for 1 ≤ i, j ≤ 3. We denote by ξ = −e1 and by η the dual 1-form of ξ. We
define a (1, 1)-type tensor field φ by φ(ξ) = 0, φ(e2) = e3 and φ(e3) = −e2.
It is easily check that (G,φ, ξ, η, g) admits a left invariant almost Kenmotsu
structure. For more details regarding the above statements we refer to Dileo
and Pastore [12].

Example 4.1 ([27]). Let G be a 3-dimensional non-unimodular Lie group
with a left invariant local orthonormal frame fields {e1, e2, e3} satisfying (4.1)
for α, β ∈ R. If either α 6= 1 or β 6= 0, G admits a left invariant non-Kenmotsu
almost Kenmotsu structure satisfying ∇ξh = (γ − β)φh.

Let us consider an almost Kenmotsu 3-manifold M . Let U1 be the open
subset of M such that h 6= 0 and U2 the open subset of M which is defined by
U2 = {p ∈ M : h = 0 in a neighborhood of p}. Therefore, U1 ∪ U2 is an open
and dense subset of M and there exists a local orthonormal basis {ξ, e, φe} of
three smooth unit eigenvectors of h for any point p ∈ U1 ∪ U2. On U1, we may
set he = λe and hence hφe = −λφe, where λ is a positive function on U1. Note
that the eigenvalue function λ is smooth on U1 ∪ U2.

Lemma 4.1 ([7, Lemma 6]). On U1 we have

∇ξξ = 0, ∇ξe = aφe, ∇ξφe = −ae,

∇eξ = e− λφe, ∇ee = −ξ − bφe, ∇eφe = λξ + be,

∇φeξ = −λe+ φe, ∇φee = λξ + cφe, ∇φeφe = −ξ − ce,

where a, b, c are smooth functions.
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Applying Lemma 4.1 in the following well known Jacobi identity

[[ξ, e], φe] + [[e, φe], ξ] + [[φe, ξ], e] = 0

yields that

(4.2)

{

e(λ) − ξ(b)− e(a) + c(λ− a)− b = 0,

φe(λ) − ξ(c) + φe(a) + b(λ+ a)− c = 0.

Moreover, applying Lemma 4.1 we have the following.

Lemma 4.2. On U1, the Ricci operator can be written as

Qξ = −2(λ2 + 1)ξ − σ(e)e − σ(φe)φe,

Qe = −σ(e)ξ − (A+ 2λa)e+ (ξ(λ) + 2λ)φe,

Qφe = −σ(φe)ξ + (ξ(λ) + 2λ)e− (A− 2λa)φe,

with respect to the local basis {ξ, e, φe}, where for simplicity we set A = e(c) +
φe(b) + b2 + c2 + 2 and σ(·) = −g(Qξ, ·).

One can check that the following relation is true.

(4.3) σ(e) = φe(λ) + 2λb, σ(φe) = e(λ) + 2λc.

From Lemma 4.2 we see that the scalar curvature is given by

(4.4) r = −2(λ2 + 1 +A).

Applying Lemmas 4.1 and 4.2, (4.3), by a direct calculation we obtain the
following nine equations.

(4.5) (∇ξQ)ξ = −4λξ(λ)ξ − (ξ(σ(e)) − aσ(φe))e − (ξ(σ(φe)) + aσ(e))φe.

(∇ξQ)e = − (ξ(σ(e)) − aσ(φe))ξ

− (ξ(A+ 2λa) + 2a(ξ(λ) + 2λ))e + (ξ(ξ(λ) + 2λ)− 4λa2)φe.(4.6)

(∇ξQ)φe = − (ξ(σ(φe)) + aσ(e))ξ

+ (ξ(ξ(λ) + 2λ)− 4λa2)e − (ξ(A− 2λa)− 2a(ξ(λ) + 2λ))φe.(4.7)

(∇eQ)ξ = 2(σ(e)− λσ(φe) − 2λe(λ))ξ

+ (A− 2 + 2λa+ λξ(λ) − e(σ(e)) − bσ(φe))e

+ (2λ3 + 2λ2a−Aλ− ξ(λ)− e(σ(φe)) + bσ(e))φe.

(4.8)

(∇eQ)e = (A− 2 + 2λa+ λξ(λ) − e(σ(e))− bσ(φe))ξ

+ (2b(ξ(λ) + 2λ)− 2σ(e)− e(A+ 2λa))e

+ (4λab− σ(φe) + λσ(e) + e(ξ(λ) + 2λ))φe.

(4.9)

(∇eQ)φe = (2λ3 + 2λ2a−Aλ− ξ(λ) − e(σ(φe)) + bσ(e))ξ

+ (4λab− σ(φe) + λσ(e) + e(ξ(λ) + 2λ))e

+ (2λσ(φe) − 2b(ξ(λ) + 2λ)− e(A− 2λa))φe.

(4.10)
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(∇φeQ)ξ = 2(σ(φe)− λσ(e) − 2λφe(λ))ξ

+ (2λ3 − 2λ2a−Aλ− ξ(λ)− φe(σ(e)) + cσ(φe))e

+ (A− 2− 2λa+ λξ(λ) − φe(σ(φe)) − cσ(e))φe.

(4.11)

(∇φeQ)e = (2λ3 − 2λ2a−Aλ − ξ(λ)− φe(σ(e)) + cσ(φe))ξ

+ (2λσ(e) − 2c(ξ(λ) + 2λ)− φe(A+ 2λa))e

+ (λσ(φe) − 4λac+ φe(ξ(λ) + 2λ)− σ(e))φe.

(4.12)

(∇φeQ)φe = (A− 2− 2λa+ λξ(λ) − φe(σ(φe)) − cσ(e))ξ

+ (λσ(φe) − 4λac+ φe(ξ(λ) + 2λ)− σ(e))e

+ (2c(ξ(λ) + 2λ)− 2σ(φe)− φe(A− 2λa))φe.

(4.13)

Applying the above relations we prove the following.

Theorem 4.2. Let M be a non-Kenmotsu almost Kenmotsu 3-manifold such

that ∇ξh = 2aφh, a ∈ R, and the scalar curvature is invariant along contact

distribution. Then, M is locally φ-symmetric if and only if it is locally isometric

to a 3-dimensional non-unimodular Lie group whose Lie algebra is of type B1.

Proof. Suppose that M is a locally φ-symmetric almost Kenmotsu 3-manifold
satisfying ∇ξh = 2aφh, a ∈ R, and h 6= 0. Then U1 = M and hence Lemmas
4.1 and 4.2 are applicable.

It is known that the curvature tensor of any three-dimensional Riemannian
manifold is given by

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X

− g(QX,Z)Y −
r

2
(g(Y, Z)X − g(X,Z)Y )

(4.14)

for any vector fields X,Y, Z, where r is the scalar curvature. Taking the co-
variant derivative of the above relation along V gives

(∇V R)(X,Y )Z

= g(Y, Z)(∇V Q)X − g(X,Z)(∇V Q)Y + g((∇V Q)Y, Z)X

− g((∇V Q)X,Z)Y −
1

2
V (r)(g(Y, Z)X − g(X,Z)Y )

(4.15)

for any vector fields X,Y, Z, V . Putting X = Z = V = e and Y = φe into
(4.15) we get

(∇eR)(e, φe)e

= − (∇eQ)φe + g((∇eQ)φe, e)e− g((∇eQ)e, e)φe+
1

2
e(r)φe.

Similarly, putting X = V = e and Y = Z = φe into (4.15) we have

(∇eR)(e, φe)φe

= (∇eQ)e+ g((∇eQ)φe, φe)e − g((∇eQ)e, φe)φe−
1

2
e(r)e.
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Putting X = Z = e and Y = V = φe into (4.15) we obtain

(∇φeR)(e, φe)e

= − (∇φeQ)φe + g((∇φeQ)φe, e)e− g((∇φeQ)e, e)φe+
1

2
φe(r)φe.

Putting X = e and Y = Z = V = φe into (4.15) gives

(∇φeR)(e, φe)φe

= (∇φeQ)e+ g((∇φeQ)φe, φe)e− g((∇φeQ)e, φe)φe−
1

2
φe(r)e.

From Definition 4.1 we see that an almost contact metric manifold is locally
φ-symmetric if and only if

(4.16) (∇V R)(X,Y )Z = η((∇V R)(X,Y )Z)ξ

for any vector fields X,Y, Z, V orthogonal to ξ. Applying the above four rela-
tions, it follows from (4.16) that an almost contact metric manifold is locally
φ-symmetric if and only if

g((∇eQ)e, e) + g((∇eQ)φe, φe) =
1

2
e(r),

g((∇φeQ)e, e) + g((∇φeQ)φe, φe) =
1

2
φe(r).

(4.17)

On the other hand, applying Lemma 4.1 and by a direct calculation we
obtain

(∇ξh)e = ξ(λ)e + 2aλφe and (∇ξh)φe = −ξ(λ)φe + 2aλe.

Since we have assumed that M satisfies ∇ξh = 2aφh, a ∈ R, and h 6= 0, then
it follows from the above relation that

(4.18) ξ(λ) = 0.

Suppose that the scalar curvature of M is invariant along the contact dis-
tribution, then from (4.4) and (4.18) we obtain

(4.19) e(A) = −2λe(λ), φe(A) = −2λφe(λ).

Using relations (4.3), (4.9), (4.10), (4.12), (4.13), (4.18) and (4.19) in (4.17) we
see that M is locally φ-symmetric if and only if

3λe(λ)− φe(λ) + 2λ2c− 2λb = 0,

3λφe(λ)− e(λ) + 2λ2b− 2λc = 0.
(4.20)

In terms of e(λ) and φe(λ), from the above relation, b and c can be expressed
as the following

2λ(λ2 − 1)c = (1− 3λ2)e(λ)− 2λφe(λ),

2λ(λ2 − 1)b = (1− 3λ2)φe(λ) − 2λe(λ).
(4.21)

From Lemma 4.1 we have

(4.22) [ξ, e] = −e+ (λ+ a)φe, [e, φe] = be− cφe, [ξ, φe] = (λ − a)e− φe.
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In view of (4.18), it follows from the above relation that

ξ(e(λ)) = −e(λ) + (λ + a)φe(λ),

ξ(φe(λ)) = (λ− a)e(λ) − φe(λ).
(4.23)

Since a is a constant, (4.2) becomes

ξ(b) = e(λ) + (λ− a)c− b,

ξ(c) = φe(λ) + (λ+ a)b− c.
(4.24)

In view of (4.18) and the assumption λ > 0, differentiating the first term of
(4.21) along the Reeb vector field ξ gives an equation; in the resulting equation
using (4.21), (4.23) and the second term of (4.24) we have

(4.25) (λ2 − 1)φe(λ)− 2ae(λ) = 0.

Similarly, applying (4.18) and the assumption λ > 0, and differentiating the
second term of (4.21) along the Reeb vector field ξ gives an equation; in the
resulting equation using (4.21), (4.23) and the first term of (4.24) we have

(4.26) (λ2 − 1)e(λ) + 2aφe(λ) = 0.

Comparing this relation with (4.25) gives

(4.27) (4a2 + (λ2 − 1)2)e(λ) = 0.

We separate the proof into the following main two cases.

Case i. In view of the above relation and the assumption λ > 0, firstly, we
consider the case λ = 1 and a = 0. Using this in (4.20) we have b = c and
using this in (4.2) we have ξ(b) = 0. Then, it follows from Lemma 4.2 that

Qξ = −4ξ − 2be− 2bφe,

Qe = −2bξ −Ae + 2φe,

Qφe = −2bξ + 2e−Aφe,

where A = 2 + e(b) + φe(b) + 2b2. By using the above relations we obtain

(4.28) Qhφ− hφQ+ g(Qξ, ·)ξ − η ⊗Qξ = 0.

In view of ξ(b) = 0, applying (4.22) we have ξ(e(b) + φe(b)) = 0 and hence we
have ξ(A) = 0. Thus, from (4.19) we see that A is a constant. Applying this,
λ = 1, a = 0 and ξ(b) = 0 in (4.5)-(4.7) we have

(4.29) ∇ξQ = 0.

Combining (4.28) with (4.29) and applying (2.3) we see that the Ricci tensor
is invariant along the Reeb flow, i.e., LξQ = 0. J. T. Cho in [8] proved that
a three-dimensional non-Kenmotsu almost Kenmotsu manifold M3 satisfies
LξQ = 0 if and only if the manifold is locally isometric to a non-unimodular
Lie group and in this case whose Lie algebra is given by

[ξ, e] = −e+ φe, [e, φe] = 0, [ξ, φe] = e− φe.
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Moreover, it was proved that b = c = 0 on M3 under the condition LξQ = 0
(cf. [8, p. 272]). Finally, we may use λ = 1 and a = b = c = 0 in relations (4.5)-
(4.13) and observe that the Ricci tensor is parallel and therefore the manifold is
locally symmetric. The present author in [26, Theorem 3.4] and Cho [7] proved
that a three-dimensional locally symmetric strictly almost Kenmotsu manifold
is locally isometric to the product space H

2(−4)× R.
Case ii. In view of (4.27), next we consider the other case, i.e., 4a2+(λ2 −

1)2 6= 0 holds on some open subset. It follows directly that e(λ) = 0 and hence
from (4.26) we have either a = 0 or φe(λ) = 0.

Case ii-1. Firstly, we consider a = 0. In view of 4a2 + (λ2 − 1)2 6= 0, from
(4.25) we have that φe(λ) = 0 and hence from (4.18) we see that λ is a positive
constant not equal to 1. Now, (4.21) becomes b = c = 0, were we used λ 6= 1.
In this case, from Lemma 4.1 we have

[ξ, e] = −e+ λφe, [e, φe] = 0, [ξ, φe] = λe − φe.

We say that M3 is locally isometric to a non-unimodular Lie group.
Case ii-2. Now we consider the other subcase, a 6= 0, or equivalently,

φe(λ) = 0. From (4.18) we know that λ is a positive constant. Thus, it follows
from (4.21) that either λ = 1 or b = c = 0. We observe that the former subcase
implies the later one. In fact, using λ = 1 in equation (4.20) we have b = c.
Using this in (4.2) we have ξ(b) = −ab and ξ(c) = ab. Because of b = c and
a 6= 0, we obtain b = 0. In both cases, (4.22) can be written as the following
form

[ξ, e] = −e+ (λ+ a)φe, [e, φe] = 0, [ξ, φe] = (λ− a)e − φe,

where a 6= 0, λ ∈ R. We still say that M is locally isometric to a non-
unimodular Lie group.

Conversely, we need to check that any left invariant non-Kenmotsu almost
Kenmotsu structure defined on a three-dimensional non-unimodular Lie group
satisfying ∇ξh = 2aφh, a ∈ R, is locally φ-symmetric. In fact, from Example
4.1 we obtain the Levi-Civita connection given by (for more details see [12])

∇ξξ = 0, ∇e2ξ = αe2 +
1

2
(β + γ)e3, ∇e3ξ =

1

2
(β + γ)e2 + (2− α)e3,

∇ξe2 =
1

2
(γ − β)e3, ∇e2e2 = −αξ, ∇e3e2 = −

1

2
(β + γ)ξ,

∇ξe3 =
1

2
(β − γ)e2, ∇e2e3 = −

1

2
(β + γ)ξ, ∇e3e3 = (α− 2)ξ,

where α, β ∈ R and either α 6= 1 or β 6= 0. Hence the Ricci tensor can be
written as the following

Qξ = −2

(

α2 − 2α+
1

4
(β + γ)2 + 2

)

ξ,

Qe2 =

(

γ2 − β2

2
− 2α

)

e2 − (αγ + β(2 − α))e3,
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Qe3 = −(αγ + β(2 − α))e2 +

(

2(α− 2) +
β2 − γ2

2

)

e3.

A simple calculation gives that (∇eiQ)ej is collinear with the Reeb vector field ξ
for any i, j ∈ {2, 3}. Then, the proof for necessary case follows from (4.17). �

Remark 4.1. Since local symmetry condition on almost Kenmotsu 3-manifolds
implies that the scalar curvature is a constant, ∇ξh = 0 (cf. [11, Proposition
6]) and local φ-symmetry, therefore, Theorems 4.1 and 4.2 are generalizations
of Cho [7, Theorem 5], [15, Corollary 6] for three-dimensional case and Wang
[26, Theorem 3.4].

Remark 4.2. According to Theorems 4.1 and 4.2 we observe that there exist
many locally φ-symmetric almost Kenmotsu 3-manifolds which are not locally
symmetric.

Before closing this section, we give an example of locally φ-symmetric almost
Kenmotsu 3-manifold which is not homogeneous. Although the scalar curvature
of such manifold is invariant along the contact distribution but the manifold
does not satisfy ∇ξh = 2aφh for certain a ∈ R.

Example 4.2. We denote by (x, y, z) the usual canonical coordinates of R3.
We set

M3 := {(x, y, z) ∈ R
3 | z > 0}.

On M3 we define an almost contact metric structure (φ, ξ, η, g) as the following:

ξ :=
∂

∂z
, η := dz, g = ze2zdx2 +

e2z

z
dy2 + dz2,

φ(ξ) = 0, φ

(

∂

∂x

)

= z
∂

∂y
, φ

(

∂

∂y

)

= −
1

z

∂

∂x
.

It was shown in [17] that M3 is a generalized (k, ν)′-almost Kenmotsu 3-
manifold with k = −1− 1

4z2 and ν = −2 + 1
z . Moreover, using the well-known

Koszul formula the Levi-Civita connection of M3 is given as the following:

∇ξξ = 0, ∇ξ
∂

∂x
=

(

1 +
1

2z

)

∂

∂x
,

∇ξ
∂

∂y
=

(

1−
1

2z

)

∂

∂y
, ∇ ∂

∂x
ξ =

(

1 +
1

2z

)

∂

∂x
,

∇ ∂
∂x

∂

∂x
= −

1 + 2z

2
e2zξ, ∇ ∂

∂x

∂

∂y
= ∇ ∂

∂y

∂

∂x
= 0,

∇ ∂
∂y
ξ =

(

1−
1

2z

)

∂

∂y
, ∇ ∂

∂y

∂

∂y
=

1− 2z

2z2
e2zξ.

By a direct calculation, the Ricci operator of M3 is given by

Qξ = −

(

2 +
1

2z2

)

ξ,
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Q
∂

∂x
=

(

1

2z2
−

1

z
− 2

)

∂

∂x
,

Q
∂

∂y
=

(

−
1

2z2
+

1

z
− 2

)

∂

∂y
.

Using the above relations we have

r = −6−
1

2z2
.

Obviously, the scalar curvature is invariant along the contact distribution. We
set

e =
1

√
zez

∂

∂x
, φe =

√
z

ez
∂

∂y
.

Then {ξ, e, φe} is a local orthonormal basis of M3 at each point. One can check
that (∇eQ)e, (∇eQ)φe, (∇φeQ)e, (∇φeQ)φe are all collinear with the Reeb
vector field. Therefore, from (4.17) we see that M3 is locally φ-symmetric. By
a direct calculation, we have he = 1

2z e, hφe = − 1
2zφe and ∇ξh = − 1

zh.

5. Almost Kenmotsu 3-manifolds and semi-symmetry

In this section, we study the other kind of symmetry condition named semi-
symmetry on almost Kenmotsu 3-manifolds.

A Riemannian manifold (M, g) is said to be semi-symmetric if its Riemann-
ian curvature tensor R satisfies

(5.1) R(X,Y ) · R = 0

for any vector fields X,Y on M , where the endomorphism R(X,Y ) acts on R
as a derivation. Riemannian manifolds satisfying (5.1) were first introduced by
E. Cartan in [5] and first named “semi-symmetric” by N. S. Sinjukov in [22].
It is clear that a locally symmetric space is semi-symmetric, but the converse
is not necessarily true. Looking for a non-locally symmetric semi-symmetric
space and determining on what condition a semi-symmetric space is locally
symmetric are interesting topics in history (see [23]).

Before giving our main results, we give a necessary and sufficient condition
for an almost Kenmotsu 3-manifold to be semi-symmetric.

Lemma 5.1. A non-Kenmotsu almost Kenmotsu 3-manifold is semi-sym-

metric if and only if

(ξ(λ) + 2λ)σ(e)− (λ2 − 2λa+ 1)σ(φe) = 0,

(ξ(λ) + 2λ)σ(φe) − (λ2 + 2λa+ 1)σ(e) = 0,

(ξ(λ) + 2λ)(r + 4A)− 2σ(e)σ(φe) = 0,

(ξ(λ) + 2λ)2 + (λ2 + 2λa+ 1)(A+ 2λa− 2λ2 − 2) = (σ(φe))2,

(ξ(λ) + 2λ)2 + (λ2 − 2λa+ 1)(A− 2λa− 2λ2 − 2) = (σ(e))2.

(5.2)



930 Y. WANG

Proof. Let M be an almost Kenmotsu 3-manifold with h 6= 0. Then U1 = M
and Lemmas 4.1, 4.2 are applicable. Applying Lemma 4.2 in (4.14), by (4.4),
the curvature tensor of M can be given as the following.

R(e, ξ)ξ = −(λ2 + 2λa+ 1)e+ (ξ(λ) + 2λ)φe.

R(φe, ξ)ξ = (ξ(λ) + 2λ)e− (λ2 − 2λa+ 1)φe.

R(e, φe)ξ = −σ(φe)e + σ(e)φe.

R(e, ξ)e = (λ2 + 2λa+ 1)ξ + σ(φe)φe.

R(e, ξ)φe = −(ξ(λ) + 2λ)ξ − σ(φe)e.

R(φe, ξ)e = −(ξ(λ) + 2λ)ξ − σ(e)φe.

R(e, φe)e = σ(φe)ξ +
1

2
(r + 4A)φe.

R(e, φe)φe = −σ(e)ξ −
1

2
(r + 4A)e.

R(φe, ξ)φe = (λ2 − 2λa+ 1)ξ + σ(e)e.

By a direct calculation, using the above nine relations we have

(R(e, ξ) ·R)(ξ, φe, ξ) = {(ξ(λ) + 2λ)σ(e)− (λ2 − 2λa+ 1)σ(φe)}e

+ 2{(λ2 + 2λa+ 1)σ(e)− (ξ(λ) + 2λ)σ(φe)}φe.

(R(e, ξ) · R)(e, φe, ξ) =

{

1

2
(ξ(λ) + 2λ)(r + 4A)− σ(e)σ(φe)

}

e− {(σ(φe))2

− (ξ(λ)+2λ)2−(λ2 + 2λa+1)(A+2λa−2λ2−2)}φe.

(R(φe, ξ) · R)(φe, e, ξ) =

{

1

2
(ξ(λ) + 2λ)(r + 4A)− σ(e)σ(φe)

}

φe− {(σ(e))2

− (ξ(λ)+2λ)2−(λ2−2λa+1)(A−2λa−2λ2−2)}e.

If M3 is semi-symmetric, then (5.2) follows directly from (5.1) and the previous
three relations. Conversely, one can check that if (5.2) is true then (5.1) holds
for any vector fields X,Y . �

Theorem 5.1. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh =
2aφh, a ∈ R. Then M is semi-symmetric if and only if one of the following

cases occurs:

• M is locally symmetric and in this case M is locally isometric to either

H
3(−1) or H

2(−4)× R.

• M is semi-symmetric and in this case in a neighbourhood U for every

point p ∈ M , there exist coordinates x, y, z and an orthonormal frame

{ξ, e, φe} of eigenvectors of h corresponding eigenvalues {0, 1,−1} such

that

ξ =
∂

∂x
, e =

f1√
2

∂

∂x
+

1 + f2√
2

∂

∂y
+

f3√
2

∂

∂z
, φe = −

f1√
2

∂

∂x
+

1− f2√
2

∂

∂y
−

f3√
2

∂

∂z
,



HOMOGENEITY AND SYMMETRY ON ALMOST KENMOTSU 3-MANIFOLDS 931

where fi = e−2x−
√
2b(z)yki(z), ki(z) : i = 1, 2, 3 are all smooth functions of z

and b(z) is a non-constant function of z.

Proof. It was proved in [15] that any semi-symmetric Kenmotsu manifold is
of constant sectional curvature −1. Thus, next we consider only the non-
Kenmotsu case. By Proposition 4.1, let M be an almost Kenmotsu 3-manifold
satisfying ∇ξh = 2aφh, a ∈ R, h 6= 0. As seen in proof of Theorem 4.1,
∇ξh = 2aφh is equivalent to ξ(λ) = 0. Now (5.2) becomes

2λσ(e)− (λ2 − 2λa+ 1)σ(φe) = 0,

2λσ(φe) − (λ2 + 2λa+ 1)σ(e) = 0,

λ(r + 4A)− σ(e)σ(φe) = 0,

4λ2 + (λ2 + 2λa+ 1)(A+ 2λa− 2λ2 − 2) = (σ(φe))2,

4λ2 + (λ2 − 2λa+ 1)(A− 2λa− 2λ2 − 2) = (σ(e))2.

(5.3)

Multiplying the first term of (5.3) by σ(e) gives that 2λ(σ(e))2 = (λ2−2λa+
1)σ(e)σ(φe). Putting the third and fifth terms of (5.3) into this equation gives

(5.4) (λ2 − 1− 2λa)(λ2 − 1 + 2λa) = 0,

where we used (4.4) and λ > 0. In view of (5.4), for simplicity, in what follows
we consider only the case λ2 − 1− 2λa = 0 since the proof for the other case is
similar with this one. As a ∈ R, it follows that λ is a positive constant. From
(4.3) we have σ(e) = 2λb and σ(φe) = 2λc. Using this and λ2 − 1 − 2λa = 0
in the first or the second term of (5.3) gives c = λb. This implies ξ(c) = λξ(b)
because of λ a constant. On the other hand, using λ, a ∈ R, from (4.2) we get

(5.5) ξ(b) = (λ− a)c− b, ξ(c) = ab,

where in the second term of (5.5) we used c = λb. Comparing (5.5) with
ξ(c) = λξ(b) and using c = λb gives

(5.6) ab = λ2c− λac− c.

Multiplying (5.6) by λ, using λa = λ2−1
2 and c = λb we obtain 2ac = λ3c− λc.

Multiplying this equation by λ and using λa = λ2−1
2 we have

(5.7) (λ2 − 1)2c = 0.

It follows that either λ = 1 or c = 0. For the later case, we also have b = 0
and this implies that σ(e) = σ(φe) = 0 and A = 2. Using this in the third term
of (5.3) gives r = −8. On the other hand, from (4.4) we have r = −2(λ2 + 3).
Comparing this with r = −8 we have λ = 1 and this implies a = 0. Now, by
relations (4.5)-(4.13) one can check that the Ricci operator is parallel, i.e., the
manifold is locally symmetric.

For the first case λ = 1, from λ2 − 1 − 2λa = 0 and c = λb we obtain still
a = 0, b = c and hence σ(e) = σ(φe) = 2b. Next we only consider the case b 6= 0
on some open subset set since the case b = 0 has been discussed. Moreover,
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from (4.2) we have ξ(b) = 0. From Lemma 4.2 we have A = 2+2b2+e(b)+φe(b).
However, using λ = 1, a = 0 and σ(e) = σ(φe) = 2b in the forth or fifth term
of (5.3) gives A = 2(b2 + 1) and hence we have e(b) + φe(b) = 0. Moreover, we
state that b is not a constant. In fact, if b is a constant, from Lemma 4.1 we
see that M is locally isometric to a non-unimodular Lie group. It was proved
in [14] that a non-unimodular Lie group is semi-symmetric if and only if it is
locally isometric. This implies b = 0 and contradicts the assumption.

Now, from Lemma 4.2 the Ricci operator can be expressed with respect to
local orthonormal basis {ξ, e, φe} by the following form

Q =





−4 −2b −2b
−2b −2(b2 + 1) 2
−2b 2 −2(b2 + 1)



 .

It follows that the eigenvalues of the Ricci operator are {−2(b2 + 2),−2(b2 +
2), 0} and hence M is semi-symmetric (see [2]).

Next, we set e1 := e−φe√
2

and e2 := φe1 = e+φe√
2
. Now from Lemma 4.1 we

get

(5.8) [ξ, e1] = −2e1, [e1, e2] =
√
2be1, [ξ, e2] = 0.

Since the distribution spanned by {ξ, e2} is integrable, then for any point p
there exists a chart {U, (x, y, z)} such that

(5.9) ξ =
∂

∂x
, e2 =

∂

∂y
, e1 = f1

∂

∂x
+ f2

∂

∂y
+ f3

∂

∂z
,

where f1, f2 and f3 are smooth functions. Using (5.8), from (5.9) we have

∂f1
∂x

= −2f1,
∂f2
∂x

= −2f2,
∂f3
∂x

= −2f3,

∂f1
∂y

= −
√
2bf1,

∂f2
∂y

= −
√
2bf2,

∂f3
∂y

= −
√
2bf3.

(5.10)

From the above discussion we also have ξ(b) = 0, e(b) + φe(b) = 0, i.e.,

(5.11)
∂b

∂x
= 0,

∂b

∂y
= 0.

By (5.11) and the above discussion, we know that b is a non-constant function
of z, denoted by b(z). Therefore, a solution for (5.10) is given by

fi = e−2x−
√
2b(z)yki(z),

where ki : i = 1, 2, 3 are smooth functions of z. This completes the proof. �

Remark 5.1. According to Theorem 5.1 one can construct many semi-symmetric
almost Kenmotsu 3-manifolds which are neither Kenmotsu nor locally symmet-
ric.
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