
J. Inf. Technol. Appl. Manag. 26(2): 111~123, April 2019 ISSN 1598-6284 (Print)

https://doi.org/10.21219/jitam.2019.26.2.111 ISSN 2508-1209 (Online)

An Activity-Centric Quality Model of Software

Seokha Koh*

Abstract

In this paper, software activity, software activity instance, and the quality of the activity instance are

defined as the ‘activity which is performed on the software product by a person or a group of persons,’

the ‘distinctive and individual performance of software activity,’ and the ‘performer’s evaluation on how

good or bad his/her own activity instance is,’ respectively. The representative values of the instance quality

population associated with a product and its sub-population are defined as the (software) activity quality

and activity quality characteristic of the product, respectively. The activity quality model in this paper

classifies activity quality characteristics according to the classification hierarchy of software activity by

the goal. In the model, a quality characteristic can have two types of sub-characteristics : Special sub-

characteristic and component sub-characteristic, where the former is its super-characteristic too simultaneously

and the latter is not its super-characteristic but a part of its super-characteristic. The activity quality

model is parsimonious, coherent, and easy to understand and use. The activity quality model can serve

as a corner stone on which a software quality body of knowledge, which constituted with a set of models

parsimonious, coherent, and easy to understand and use and the theories explaining the cause-and-

relationships among the models, can be built. The body of knowledge can be called the (grand) activity-

centric quality model of software.

Keywords：Software Quality, Software Activity, Software Activity Quality, Software Quality View, Cause

And Effect Relationships

1)

Received：2019. 02. 28. Final Acceptance：2019. 05. 09.

* Department of Management Information Systems, Chungbuk National University, 1 Chungdae-ro Seowon-gu Cheongju, Chungbuk, 28644,
Korea, Tel：+82-43-261-7062, e-mail：shkoh@cbnu.ac.kr

112 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

This paper presents an activity quality

model which is a direct extension of Koh and

Koh’s [2018] activity-oriented usability model

for software. Koh and his colleagues [Koh

2016, 2017a, 2017b; Koh and Jiang, 2017] de-

fine software activity as the activity which

is performed on the software product by a

person or a group of persons. Using, changing,

and installing software products, for example,

are important types of software activity. A

software product should be good for various

software activity types.

In this paper, the activity type and the

activity instance are distinguished. Using, chan-

ging, developing, and installing, for example,

will be used to denote types of software acti-

vity. Using instance, changing instance, deve-

loping instance, and installing instance, for

example, will be used to denote the distinc-

tive and individual performance of corres-

ponding type of software activity. Rigorously

expressing, whenever a person or a group of

persons performs an activity on a software

product to achieve distinctive and specific

objectives, an activity instance is generated.

For example, a specific individual’s playing

a specific software game product or shopping

on a specific internet shopping mall at some

specific moment is a using instance.

The quality of something is can be defined

as, according to Collins Cobuild Advanced Lear-

ner’s English Dictionary, ‘how good or bad it

is.’1) Koh and Koh [2018] define the quality

of a software product as ‘how product good

or bad is the product?’ In this paper, the ac-

tivity quality of a software product is defined

1) In this paper, italic font emphasizes that correspon-
ding part is quoted with no or only slight changes
from the cited literature.

as ‘‘how good or bad is the product for software

activity?’

The goodness of a software product may vary

by software activity type. Specifically, Koh

and Koh [2018] define the usability of a soft-

ware product as ‘how good a product is for being

used’ or ‘goodness for using.’ This definition

of usability is very simple and precise in sharp

contrast with many existing definitions of

other authors, for example, ISO/IEC SQuaRE

(ISO/IEC 25000 Series, Systems and Software

Quality Requirements and Evaluation).

Software quality is a very confusing con-

cept. For example, some authors regard usabi-

lity concerning user’s experiences [Gonzalez

Sanchez et al., 2009b; Microsoft Corporation

2000; U.S. Department of Health and Huma-

nity Services, 2017] while other authors re-

gard it concerning the product itself [Herrera

et al., 2010; ISO 9126-1, 9241-11, 25000 Series;

Nielsen, 2016]. Koh and his colleagues [Koh,

2016, 2017a, 2017b; Koh and Jiang, 2017; Koh

and Koh, 2018] combine these two approaches

to define two types of usability : the usability

instance as the goodness evaluated by the

user him/herself of an individual using ins-

tance, and the product usability as the good-

ness of the product for using as a type of

software activity. The product usability is

get by aggregating all usability instances

associated with a product.

In section 2, a classification model of soft-

ware activity types is presented. In section 3,

an activity software quality model is presented.

The parts regarding using and usability in

sections 2 and 3 correspond to those in Koh

and Koh’s [2018] activity-oriented usability

model of software. In section 4, the discus-

sions for a more comprehensive software qua-

lity body of knowledge are presented. In sec-

tion 5, the conclusions and suggestions for

further research are presented.

제26권 제2호 An Activity-Centric Quality Model of Software 113

Developing : (Developer)
*
 Making a usable software product.

Operating : (Operator) Letting a software product able to be used.

√ Installing : Making the product operative initially.

√ Maintaining : Keeping the product in operation.

√ Recovering : Making the product operative again

Examining : (Potential or Entry-level User) Studying to learn about the product or practicing using the product.

Accessing (User) : Becoming to be able to use the product.

Using (User) : Interfacing with the product with specific goals other than examining and changing the product.
**

√ Working : Using a product to complete a set of predetermined tasks.

√ Studying : Using a product to learn about a particular subject or subjects.

√ Play : using a product to enjoy.

Changing (User or Software Engineer) : Making the product altered.

√ Changing user-interface : Altering user-interface

√ Changing data-interface : Altering data-interface.

√ Changing data processing : Altering the processing of data.

√ Changing architecture : Altering architecture.

Retiring (Operator) : Letting the product unable to be used any longer.

* (the type of stakeholder who performs the corresponding activity type).
**
This part is the same as the corresponding part of Koh and Koh [2018].

<Figure 1> Level 1 and Level 2 Special Sub-Types of Software Activity

2. Software Activity Model

In this paper, the sub-types of a software

activity type (the super-type activity) are

classified into two categories :

∙Special Sub-type : An activity instance of

a special sub-type is an activity instance

of the super type too.

∙Component Sub-type : An activity instance

of a component sub-type is not a super-type

activity instance, but a part of a super-

type activity instance.

<Figure 1> shows an example of the classi-

fication of special sub-types of software acti-

vity. The criterion of the classification is the

goal of the activity. The classification is not

mutually exclusive. That is, it is possible to

classify an activity instance to more than two

types simultaneously. However, the level 1

classification is designed to be exhaustive.

That is, it is possible to classify every acti-

vity instance into at least one type of level

1 properly.

It is noticeable that accessing is separated

from using since accessing can occur inde-

pendently with using : For example, A person

may access a software product, for example,

to test or study it, or customize its interface

[Koh and Jiang, 2017].

It is also noticeable that learning, recog-

nizing appropriateness and testing are absent

in <Figure 1>. Testing is classified as a com-

ponent sub-type of changing (refer <Figure 2>).

Learning and recognizing is not regarded

as a type of software activity since they are

generally used to denote mental phenomena

which occur inside a person [Koh, 2017a]. For

example, Oxford Learner’s Dictionary defines

learning as ‘gaining knowledge or skill by

studying, from experience, from being taught.

On the other hand, studying or examining are

114 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Using (User) : Interfacing with the product with specific goals other than examining and changing the product.**

√ Navigating : Moving from a page to another

√ Data-Preparing : Preparing the data to be input

√ Data-Inputting : Inputting the data prepared.

√ Response-Waiting : Waiting for the response of the product.

√ Output-Examining : Examining the output of the product.

√ Output-Utilizing : Utilizing the output examined.

Changing (User or Software Engineer) : Making the product altered.

√ Analyzing : Preparing to alter the product (validly, effectively and efficiently).

√ Changing source code : Altering the source code of the product.

√ Testing : Identifying the faults in the altered product.

*
(the type of stakeholder who performs the corresponding activity type).

**
This part is the same as the corresponding part of Koh and Koh [2018].

<Figure 2> Examples of Component Sub-Type of Using and Changing

usually used to denote a activity type that

take time and efforts. Examining and study-

ing are distinguished by their goals : learning

about the product itself or some other things.

The classification in <Figure 1> is not mu-

tually exclusive. For example, a person can

interface with a software product both for

using and examining the product.

Maintaining is one of the most confusing

software terminologies. For a hardware pro-

duct, maintaining is typically used to mean

preserving and restoring its original state

[Koh and Han, 2015; NF EN 13306 : 2001].

For a software product, however, maintaining

is typically used to refer changing or modi-

fying it [ANSI/IEEE Std. 729 : 1983; Boehm,

1981; IEEE Std. 1219 : 1998; ISO/IEC 14764 :

2006; Martin and Osborne, 1983]. GAO (The

American General Accounting Office) and ANSI/

IEEE Std. 729 : 1983 define software main-

tenance to include virtually all changes made

on a software product after its delivery. Al-

though the definitions of these organizations

are generally accepted as the standard defi-

nitions of software maintenance, some litera-

tures define software maintenance as a spe-

cial type of software modification or change

[Abran and Nguyenkim, 1993; Chaptin et al.,

2001; Hatton, 2007; Hunt et al., 2008; ISO/

IEC 14764 : 2006; Koh and Han, 2015; Martin

and Osborne, 1983; Sneed, 2004]. It is one of

the most important causes of the chaos in the

literature and practice regarding software

maintenance to use the term ‘software main-

tenance’ without mentioning its scope expli-

citly [Chaptin et al., 2001; Koh and Han,

2015; Seed, 2004]. Here, maintaining is used

to mean preserving the initial installed state

of the product and do not involve changing

the source code of the product.

Changing in this paper denotes changing

a software product after its delivery. Chan-

ging during the development phase is not

included in the ‘changing.’ Changing user-

interface, data-interface, data processing, and

architecture are special types of changing.

Special sub-types of changing may be classi-

fied otherwise. For example, Koh and Han

[2015] classify the post life cycle changes of

software classify into modification, enlarge-

ment, replacement, and retirement. It is beyond

the scope of this paper, however, to classify

the special sub-types of changing rigorously.

The goal of this section is to present a satis-

factory practical example of the classifica-

tion of software activity.

제26권 제2호 An Activity-Centric Quality Model of Software 115

Developability : (Developer; Requirement documents and/or specifications)* Goodness for developing.

Operate-ability : (Operator; Source code or Executable code) Goodness for operating.

√ Install-ability : Goodness for installing.

√ Maintainability : Goodness for maintaining.

√ Recoverability : Goodness for recovering

Examinability : (Potential or Entry-level User, Manager, Software Engineer; Source code and other documents)

Goodness for examining.

Access-ability (Potential user; Executable code with user interfaces) : Goodness for accessing.

Usability (User; Binary code with user interfaces) : Goodness for using.
**

√ Work-ability : Goodness for working,

√ Study-ability : Goodness for studying.

√ Play-ability : Goodness for playing,

Changeability (User or Software Engineer, Manager; Source code) : Goodness for changing.

√ User-interface change-ability : Goodness for changing user-interface.

√ Data-interface change-ability : Goodness for changing data-interface.

√ Data-processing change-ability : Goodness for changing data processing.

√ Architecture change-ability : Goodness for changing architecture.

Retire-ability (Operator; Executable code and associated things) : Goodness for retiring.

* (The type of stakeholder who performs and evaluate the corresponding activity instance; Object of evaluation).
**
This part is the same as the corresponding part of Koh and Koh [2018].

<Figure 3> Level 1 and Level 2 Special Characteristics of Software-Activity Quality Model

<Figure 2> shows examples of component

sub-type of using and changing. Especially,

the component sub-types of using are intended

to be exhaustive and mutually exclusive. That

is, every atomic activity of a using instance

can and should be classify into one and only

one of them. Those of changing are not in-

tended to be so rigorous. Especially, testing

is generally not performed against the cur-

rent product, but generally performed against

the altered product. So, it may improper to

define testing as the software activity that

is performed to the (current) software pro-

duct.

3. Goodness of a Software Product

In this paper, the representative values of

the instance quality population associated

with a product and its sub-population are

defined as the (software) activity quality

and activity quality characteristic of the pro-

duct, respectively. Koh and Koh’s [2018] usabi-

lity corresponds to the population of usabi-

lity instances associated with a software pro-

duct.

According to Oxford online dictionary, the

suffix ‘-ability’ means ‘the quality of being able

to be or having to be’ or ‘the fact of having

the quality mentioned.’ According to this prin-

ciple, for example, usability can be used to

mean ‘the quality of being able to be used,’

‘how good it is to be used,’ or ‘goodness for

using.’ [Koh and Whang, 2016; Koh and Jiang,

2017; Koh and Koh, 2018]. Applying this na-

ming scheme, the activity quality characteri-

stics associated with software activity types

on <Figure 1> can be defined as in <Figure 3>

Koh and Whang’s [2016] ‘-ability’ principle

can be rephrased as the following.

116 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Usability
*

√ Navigate-ability : Goodness for navigating,

√ Data-prepare-ability : Goodness for preparing data to be input,

√ Data-input-ability : Goodness for inputting data,

√ Response-wait-ability : Goodness for waiting response,

√ Output-examine-ability : Goodness for examining output data.

√ Output-utilize-ability : Goodness for utilizing the output. data

Change-ability.

√ Analyzability : Goodness for analyzing.

√ Source-code change-ability : Goodness for changing the source code.

√ Testability : Goodness for testing.

*This part is the same as the corresponding part of Koh and Koh [2018].

<Figure 4> Component Sub-Characteristics of Usability and Change-Ability

∙Activity quality naming principle : The

suffix ‘-ability’ can be attached to and only

to software activity type to denote the corre-

sponding activity quality characteristics.

As activity types, an activity quality charac-

teristic can have two types of sub-charac-

teristics :

∙Special sub-characteristic : The sub-cha-

racteristic of this type is its super-charac-

teristic simultaneously.

∙Component sub-characteristic : The sub-

characteristic of this type is not its super-

characteristic simultaneously. The aggre-

gation of sub-characteristic of this type can

be used as the super characteristic.

<Figure 4> shows the component sub-cha-

racteristics of usability and change-ability

corresponding to their component sub-types.

It will provide much richer and more reliable

data to measure the component sub-charac-

teristics and to aggregate them than to mea-

sure the usability or change-ability directly

[Koh and Koh, 2018].

Significant special sub-characteristics of

an activity quality characteristic can be mea-

sured and aggregated to be the activity quality

characteristic. It also will provide much richer

and more reliable information than to mea-

sure the activity quality characteristic directly.

For example, study-ability and play-ability can

be measured respectively and aggregated to

usability for an educational game product

[Koh and Koh, 2018]. If play-ability is turned

out to be low relatively to study-ability, then

effort can be devoted chiefly into enhancing

entertainingness.

4. Discussions

Koh and his colleagues [Koh, 2017a, 2017b;

Koh and Jiang, 2017; Koh and Koh, 2018] have

proposed a model of the view (refer <Figure

5>) and quality view and principles regarding

software quality :

∙Principle of one view : A software quality

model should correspond to one and only

one software quality view.

∙Principle of Parsimony : The quality cha-

racteristic should be defined as brief and

precise as possible.

∙Principle of Cohesiveness : The quality cha-

racteristic should consist of elements that

fit together well and form a united whole.

∙Principle of Inheritance : Every aspect of

usability should be able to be inherited by

its special sub-characteristics, possibly, with

proper specializations.

제26권 제2호 An Activity-Centric Quality Model of Software 117

∙End view : It represents the effort to find out for what the software product should be good. The quality

characteristics in this view correspond to the effects of good quality in means view.

 ‣ Short-term view : It focuses on short-term effects of various software activity types.

√ Performer’s view on software activity : It represents the performer’s subjective evaluation of the software

activity that he/she has performed.

√ Third party’s view on software activity : It represents the interests of stakeholders other than the performer,

which are associated with individual software activities.

 ‣ Long-term view : It focuses on the long-term and aggregated effects on various stakeholders.

∙Means view : It represents the effort to make the software product good for various ends. The elements of

this view correspond to the causes of desirable effects. Software engineers should be able to manipulate the

elements to improve the quality in end view.

 ‣ Intrinsic view : It identifies static and invariant properties of the software product, which affect the

achievement of ends. It does not change unless the product is changed.

 ‣ Contingency view : It identifies static and invariant emerging properties of contingencies, which affect the

achievement of ends. It can change even if the product is not changed.

<Figure 5> Koh and Jiang's [2017] Model of Software Quality View

The activity software quality model in sec-

tion 3 abides by all the four principles. Specifi-

cally, it corresponds to the ‘performer’s view on

software activity’ in <Figure 5>. As the result,

the activity quality model is parsimonious,

coherent, and easy to understand and use.

Most of existing software quality model

violate the principle of one view. For example,

SQuaRE suffers from ambiguity, inconsis-

tency, and contradictions in the definitions

of quality characteristics and sub-characte-

ristics, making it un-suitable to measure the

design quality of software product [Al-Kilidar,

2005; Haboush et al., 2014; Kitchenham and

Pfleeger, 1996; Koh, 2017a; 2017b; Koh and

Jiang, 2017; Koh and Whang, 2016].

Koh [2017] reclassifies 86 measures which

belong to 8 characteristics (31 sub-charac-

teristics) into 7 categories (15 sub-categories) :

Data processing (valid; correct; efficient), data

interface, user interface (information provi-

ding, data inputting; process controlling; pre-

sentation, appearance & composite), compo-

site, software engineering (diagnosis and tes-

ting; architecture; coding), system (capacity;

runtime behavior; operation management),

activity view (developing & maintaining; in-

stalling) (refer <Table 1>). The result shows

the fundamental reason of SQuaRE’s pro-

blems : The items related with end and means

exist mixed unsystematically in a model (refer

<Table 1> and <Table 2>). For example, us-

ability of a product is influenced by data pro-

cessing of the product and the system on which

the product is operated as well as by user

interface of the product. Usability is indirec-

tly influenced by data interface of the product

too. In SQuaRE, only the items related to user

interface are classified into usability, implying

implicitly that usability is influence only by

user-interface.

Moreover, among 86 measures of the pro-

duct quality model, only 21 measures are int-

rinsic [Koh, 2017b]. This means that the pro-

duct quality model does not provide suffi-

cient information for software engineers to

improve the activity quality. It is the int-

rinsic quality attributes that software engi-

neers can control to improve the activity qua-

lity. The contingency quality attributes are

influenced many factors other than the pro-

duct, which software engineers cannot con-

trol. More intrinsic quality attributes should

be identified to complete a separate intrinsic

118 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Category Measures of SQuaRE’s Product Quality Model

DP (data processing)-

Valid

FAp* (functional appropriateness of usage objective, functional appropriateness of system),

FCp (functional coverage)

DP-Correct FCr (functional correctness)

DP-Efficient
ERu (bandwidth utilization, mean processor utilization, mean memory utilization, mean

I/O devices utilization,)

Data interface
CIn (data formats exchangeability, data exchange protocol sufficiency, wxternal interface

adequacy), PRe (data reusability/import capability)

UI (user interface)-

Information providing

UAp (demonstration coverage, description completeness, entry point self-descriptiveness),

ULe (error messages understandability, self-explanatory user interface, user guidance

completeness), UOp (message clarity, monitoring capability)

UI-Data inputting

SIn (buffer overflow prevention), UEp (avoidance of user operation error, user entry

error correction, user error recoverability), ULe (entry fields defaults), UOp (input device

support)

UI-Process controlling UOp (functional customizability, undo capability)

UI-Presentation,

appearance & composite

UAc (accessibility for users with disabilities, supported languages adequacy), UIn

(appearance aesthetics of user interfaces), UOp (appearance consistency, operational

consistency, understandable categorization of information, user interface customizability)

Composite

CCo (co-existence with other products), PAd (hardware environmental adaptability,

operational environment adaptability, system software environmental adaptability), PRe

(functional inclusiveness, product quality equivalence, usage similarity)

SWE (SW engineering)-

Diagnosis and testing

MAn (diagnosis function effectiveness, diagnosis function sufficiency), MTe (autonomous

testability, test function completeness, test restartability)

SWE-Architecture MMo (coupling of components, cyclomatic complexity adequacy), MRe (reusability of assets)

SWE-Coding MRe (coding rules conformity)

System-Capacity

ECa (transaction processing capacity, user access capacity, user access increase

adequacy), RFt (redundancy of components), ETb (mean response time, mean throughput,

mean turnaround time, response time adequacy)

System-Runtime Behavior

MAn (system log completeness), RAv (mean downtime, system availability), RFt (mean

fault notification time), RMa (failure rate, mean time between failure), ETb (turnaround

time adequacy), RRe (mean recovery time)

System-Operation

Management

PIn (ease of installation), RRe (backup data completeness), SAc (authentication

mechanism sufficiency, authentication rules conformity, system log retention, user audit

trail completeness), SCo (access controllability, data encryption correctness, strength

of cryptographic algorithms), SIn (data integrity, internal data corruption prevention),

SNo (digital signature usage)

AV (activity view)-

Developing & Maintaining

MMd (modification capability, modification correctness, modification efficiency), RFt

(failure avoidance, fault correction), RMa (test coverage)

AV-Installing PIn (installation time efficiency)

<Table 1> Koh’s [2017a] Classification of the Measures of SQuaRE’s Product Quality Model

*The sub-characteristic to which the measures in the parenthesis belong. For the abbreviation, refer <Table 2>.

quality model of software. The model should

conform to the principles suggested above.

The quality model subjects to contingency

view, third party’s view, and long-term view

respectively should be developed too. They

should confirm to the principles suggested

above. The theories to explain the cause-and-

effect relationships among the models should

be developed too. The theories and the models

will constitute a software quality body of know-

ledge which will guide development, use, and

post life cycle changes of software.

제26권 제2호 An Activity-Centric Quality Model of Software 119

This Paper :
Level 1

Characteristic

Product Quality Model of SQuaRE

Characteristic Measure

Short-term View Mean View Short-term View Mean View

Developability Activity viewi

Operate-ability
P, PIn, PRe;
S, SAc, SAc, SNo;
UOp

SCo, SIn
Activity viewii

Systemiii

Composite
iv

Data interface,
System

v

Examinability
Composite

vi

User interface
vii

Access-ability System
viii

Usability U, UAc

C, CCo, CIn;
F, FAp, FCp, FCr;
E, ECa, ERu, ETb;
UIn,

Data processing;
System

ix

User interface
x

Changeability
M, MAn, MMd, MRe,
MTe;
PAd

MMo Activity view
i

SW Engineering

Retire-ability

None UAp, ULe Composite
xi

<Table 2> Correspondence between the Activity Quality Model and the Product Quality Model of SQuaRE

*
Abbreviation of characteristics (sub-characteristics) : For example, CCo means ‘Co-existence of Compatibility.
C (Co, In) = Compatibility (Co-existence, Interoperability),
E (Ca, Ru, Tb) = Performance Efficiency (Capacity, Resource utilization, Time behavior)
F (Ap, Cp, Cr) = Functional suitability (Functional appropriateness, Functional completeness, Functional correctness),
M (An, Md, Mo, Re, Te) = Maintainability (Analyzability, Modifiability, Modularity, Reusability, Testability),
P (Ad, In, Re) = Portability (Adaptability, Install-ability, Replaceability),
R (Av, Ft, Ma, Re) = Reliability (Availability, Fault tolerance, Maturity, Recoverability)
S (Ac, Au, Co, In, No) = Security (Accountability, Authenticity, Confidentiality, Integrity, Non-repudiation),
U (Ac, Ap, Ep, In, Le, Op) = Usability (Accessibility, Appropriateness recognizability, User error protection, User
interface aesthetics, Learnability, Operability)
i. All the items belong to Developing & maintaining in <Table 5>. It is noticeable these items are related to change-ability too.
ii. Installing
iii. Operation management (including ease of installation only; It belongs to PIn in SQuaRE)
iv. Excluding product quality equivalence, usage similarity.
v. Operation management (excluding ease of installation).
vi. Including usage similarity only; It belongs to PRe in SQuaRE.
vii. Information providing (excluding monitoring capability), presentation, appearance, & composite (including appearance
consistency only; It belongs to UOp in SQuaRE)

viii. Capacity (including redundancy of component, user access capacity, user access increase adequacy only; They
belong to RFt, ECa, ECa in SQuaRE, respectively), runtime behavior (excluding system log completeness, mean
fault notification time).

ix. Capacity (Excluding redundancy of component, user access capacity, user access increase adequacy), time behavior
(including system log completeness, mean fault notification time only; They belong to MAn, RFt in SQuaRE,
respectively).

x. Excluding the measures that is related to examinability.
xi. Including product quality equivalence only which belongs to PRe in SQuaRE.

5. Conclusions

The activity quality model in this paper is a

direct extension of Koh and Koh’s [2018] ac-

tivity-oriented usability model for software.

It has 7 characteristics, developability, operate-

ability, examinability, access-ability, usability,

changeability, and retire-ability, which corres-

pond to developing, operating, examining, acce-

ssing, using, changing, and retiring, respec-

120 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

tively. They are designed to be exhaustive and

mutually exclusive.

A quality characteristic can have two types

of sub-characteristics : Special sub-charac-

teristic and component sub-characteristic,

where the former is its super-characteristic

too simultaneously and the latter is not its

super-characteristic but a part of its super-

characteristic. For example, usability has work-

ability, study-ability, and play-ability as its

special sub-characteristics. This classification

of special sub-characteristics of usability is

really an example and is meant to be neither

exhaustive nor mutually exclusive. Usability

has navigate-ability, data-prepare-ability, data-

input-ability, response-wait-ability, output-

examine-ability, and output-utilize-ability as

its component sub-characteristics. They are

meant to be exhaustive and mutually exclu-

sive. The activity quality (sub-)characteri-

stic is defined as ‘‘how good or bad is the

product for the corresponding software acti-

vity?’ or, shortly, ‘goodness for the correspon-

ding software activity.’

The activity quality model is parsimonious,

coherent, and easy to understand and use.

The activity quality model can serve as a cor-

ner stone on which a software quality body

of knowledge, which constituted with a set

of models parsimonious, coherent, and easy

to understand and use and the theories ex-

plaining the cause-and-relationships among

the models, can be built. The body of know-

ledge can be called the (grand) activity-cen-

tric quality model of software. To be so, the

quality models which are subjects to contin-

gency view, third party’s view, and long-term

view respectively should be developed. They

should confirm to the principles of one view,

parsimony, cohesiveness, and inheritance.

The theories to explain the cause-and-effect

relationships among the models should be

developed thereafter.

References

 [1] Abran, A. and Nguyenkim, H., “Measure-

ment of the Maintenance Process from

a Demand-Based Perspective”, Journal

of Software Maintenance : Research and

Practice, Vol. 5, No. 2, 1993, pp. 63-90.

 [2] ANSI/IEEE Std., 729-1983, IEEE Stan-

dard Glossary for Software Engineering

Terminology, 1983.

 [3] Boehm, B. W., Software Engineering Eco-

nomics, Prentice Hall PTR : Upper Sad-

dle River, NJ, USA, 1981.

 [4] Chaptin, N., Hale, J., Kahn, K. R., Tan

Jr. W. G., “Types of Software Evolution

and Software Maintenance”, Journal of

Software Maintenance and Evolution,

Vol. 13, No. 1, 2001, p. 3.

 [5] Collins Cobuild Advanced Learner’s En-

glish Dictionary, reference date : 05/16/

2016.

 [6] González Sánchez, J. L., Padilla Zea, N.,

and Guitierrez Vela, F. L., “Playability :

How to Identify the Player Experience

in a Video Game”, Proceedings of IFIP

Conference on Human-Computer Interac-

tion : Human-Computer Interaction-IN-

TERACT 2009, pp. 356-359.

 [7] Hatton, L., “How Accurately Do Engi-

neers Predict Software Maintenance Tasks?”

Computer, 2007, pp. 64-69.

 [8] Herrera, M., Moraga, M. A., Caballero,

I., and Calero, C., “Quality in Use Model

for Web Portals (QiUWeP)”, In : Daniel

F., Facca F. M. (eds), Current Trends in

Web Engineering. ICWE 2010, Lecture

Notes in Computer Science, Vol. 6385,

Springer : Berlin, Heidelberg, 2010, pp.

91-101.

제26권 제2호 An Activity-Centric Quality Model of Software 121

 [9] Hunt, B., Turner, B., and McRitchie, K.,

“Software maintenance Implications on

Cost and Schedule”, Proceedings of Aero-

space Conference, 2008 IEEE, 2008, pp.

1-8.

[10] IEEE, IEEE Std. 1219-1998, IEEE Stan-

dard for Software Maintenance, 1998.

[11] ISO/IEC, ISO/IEC 14764 (IEEE Std 14764-

2006), Software Engineering-Software Life

Cycle Processes-Maintenance (2nd ed.),

2006-09-01.

[12] ISO/IEC 25010 : 2011, Systems and Soft-

ware Engineering-Systems and Software

Quality Requirements and Evaluation

(SQuaRE)-System and Software Quality

Models, ISO, 2011.

[13] ISO/IEC 25023 : 2016, Systems and Soft-

ware Engineering-Systems and Software

Quality Requirements and Evaluation

(SQuaRE)-Measurement of system and

Software Product Quality, ISO, 2016.

[14] Kitchenham, B. and Pfleeger, S. L., “Soft-

ware Quality : The Elusive Target [spe-

cial issue section]”, Software, IEEE, Vol.

13, 1996, pp. 12-21.

[15] Koh, S., “Cause-and-Effect Perspective

on Software Quality : Application to ISO/

IEC 25000 Series SQuaRE’s Product Qua-

lity Model”, Journal of Information Tech-

nology Applications and Management, Vol.

23, No. 3, 2016, pp. 71-86.

[16] Koh, S., “The Checklist for System and

Software Product Quality Implied in the

Product Quality Model of ISO/IEC 25000

Series SQuaRE”, Proceedings of 17
th Inter-

national Conference on IT Applications

and Management : Babolsar, Iran, 22-23

February 2017a, pp.126-136.

[17] Koh, S., “The Principle of One Quality

View and Division of Product Quality

Model of ISO/IEC 25000 Series SQuaRE”,

Asian Journal of Information and Com-

munications, Vol. 9, No. 1, 2017b, pp. 87-

101.

[18] Koh, S. and Han, M. P., “Purposes, Re-

sults, and Types of Software Post Life

Cycle Changes”, Journal of IT Applica-

tions and Management, Vol. 22, No. 3,

2015, pp. 143-167.

[19] Koh, S. and Jiang, J., “What should Using

a Software Product and Usability of the

Software product be?”, Journal of Informa-

tion Technology Applications and Mana-

gement, Vol. 24, No. 3, 2017, pp. 73-92.

[20] Koh, S., Youjoung Koh, “The Activity-

Oriented Usability Model od Software”,

Journal of IT Applications and Manage-

ment, Vol. 25, No. 3, 2018, pp. 17-28.

[21] Koh, S. and Whang, J., “A Critical Review

on ISO/IEC 25000 SQuaRE Model”, Pro-

ceedings of the 15th International Confe-

rence on IT Applications and Manage-

ment : Mobility, Culture and Tourism in

the Digitalized World, (ITAM15), 2016,

pp. 42-52.

[22] Martin, R. J. and Osborne, W., “Guidance

of Software Maintenance”, U.S. National

Bureau of Standards, NBS Pub., 1983,

pp. 500-129,

[23] Microsoft Corporation, “Usability in Soft-

ware Design”, https://msdn.microsoft.com/

en-us/library/ms997577.aspx, 2000 (refe-

rence date : 17/04/2017).

[24] NF EN 13306, Terminologies de la Main-

tenance, June 2001.

[25] Nielsen, J., “Usability 101 : Introduction

to Usability”, Nielsen Norman Group,

https://www.nngroup.com/articles/usa

bility-101-introduction-to-usability/,

Jan 4, 2012 (reference data 17/04/2017).

[26] Oxford Learner’s Dictionary, reference

date : 05/16/2016.

[27] Sneed, H. M., “A Cost Model for Software

Maintenance and Evolution”, Proceedings

122 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

of the 20th IEEE International Confe-

rence on Software Maintenance (ICSM’04),

2004, pp.264-273.

[28] U.S. Department of Health & Humanity

Services, “Usability Evaluation Basics”,

https://www.usability.gov/what-and-why/

usability-evaluation.html, reference date :

17.04/2017.

제26권 제2호 An Activity-Centric Quality Model of Software 123

저자소개

Seokha Koh

Seokha Koh is the professor

of the Department of MIS,

Chungbuk National Univer-

sity. His current primary re-

search areas include Soft-

ware Quality Management,

Business Process Modeling, Software Architec-

ture, Project Management, and Software Engi-

neering.

