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NEUTROSOPHIC IDEALS IN SUBTRACTION

ALGEBRAS

Young Hie Kim and Sun Shin Ahn∗

Abstract. The notions of a neutrosophic subalgebra and a neu-
trosohic ideal of a subtraction algebra are introduced. Character-
izations of a neutrosophic subalgebra and a neutrosophic ideal are
investigated. We show that the homomorphic preimage of a neutro-
sophic subalgebra of a subtraction algebra is a neutrosophic subalge-
bra, and the onto homomorphic image of a neutrosophic subalgebra
of a subtraction algebra is a neutrosophic subalgebra.

1. Introduction

B. M. Schein [8] considered systems of the form (Φ; ◦, \), where Φ is
a set of functions closed under the composition “ ◦ ” of functions (and
hence (Φ; ◦) is a function semigroup) and the set theoretic subtraction
“ \ ” (and hence (Φ; \) is a subtraction algebra in the sense of [1]). B.
Zelinka [11] discussed a problem proposed by B. M. Schein concerning
the structure of multiplication in a subtraction semigroup. He solved
the problem for subtraction algebras of a special type, called the atomic
subtraction algebras. Y. B. Jun et al. [4, 5] introduced the notion of
ideals in subtraction algebras and discussed characterization of ideals.
S. S. Ahn and Y. H. Kim [2] introduced the notions of an intersectional
soft subalgebra and an intersectional soft ideal of a subtraction algebra
and investigated some related properties of them.

Zadeh [10] introduced the degree of membership/truth (t) in 1965
and defined the fuzzy set. As a generalization of fuzzy sets, Atanassov
[3] introduced the degree of nonmembership/falsehood (f) in 1986 and
defined the intuitionistic fuzzy set. Smarandache introduced the degree
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of indeterminacy/neutrality (i) as independent component in 1995 (pub-
lished in 1998) and defined the neutrosophic set on three components (t,
i, f) = (truth, indeterminacy, falsehood). Jun et. al [7] introduced the
notions of a neutrosophic N -subalgebras and a (closed) neutrosophic
N -ideal in a BCK/BCI-algebras and investigated some related prop-
erties.

In this paper, we introduce the notions of a neutrosophic subalgebra
and a neutrosohic ideal of a subtraction algebra. Characterizations of a
neutrosophic subalgebra and a neutrosophic ideal are investigated. We
show that the homomorphic preimage of a neutrosophic subalgebra of
a subtraction algebra is a neutrosophic subalgebra, and the onto homo-
morphic image of a neutrosophic subalgebra of a subtraction algebra is
a neutrosophic subalgebra.

2. Preliminaries

We review some definitions and properties that will be useful in our
results (see [5]).

By a subtraction algebra we mean an algebra (X,−, 0) with a single
binary operation “ − ” that satisfies the following conditions: for any
x, y, z ∈ X,

(S1) x− (y − x) = x,
(S2) x− (x− y) = y − (y − x),
(S3) (x− y)− z = (x− z)− y.
The subtraction determines an order relation on X: a ≤ b if and only
if a − b = 0, where 0 = a − a is an element that does not depend on
the choice of a ∈ X. The ordered set (X;≤) is a semi-Boolean algebras
in the sense of [1], that is, it is a meet semilattice with zero 0 in which
every interval [0, a] is a Boolean algebra with respect to the induced
order. Hence a∧ b = a− (a− b); the complement of an element b ∈ [0, a]
is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))
= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following are true:

(a1) (x− y)− y = x− y,
(a2) x− 0 = x and 0− x = 0,
(a3) (x− y)− x = 0,
(a4) x− (x− y) ≤ y,
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A non-empty subset A of a subtraction algebra X is called a subal-
gebra [4] of X if x− y ∈ A for any x, y ∈ A. A non-empty subset I of a
subtraction algebra X is called an ideal [4] of X if

(I1) 0 ∈ I,
(I2) (∀x, y ∈ X)(x− y, y ∈ I imply x ∈ I).

A mapping f : X → Y of subtraction algebras is called a homomorphism
if f(x− y) = f(x)− f(y) for all x, y ∈ X.

Definition 2.1. Let X be a space of points (objects) with generic
elements in X denoted by x. A simple valued neutrosophic set A in X is
characterized by a truth-membership function TA(x), an indeterminacy-
membership function IA(x), and a falsity-membership function FA(x).
Then a simple valued neutrosophic set A can be denoted by

A := {〈x, TA(x), IA(x), FA(x)〉|x ∈ X},
where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore
the sum of TA(x), IA(x), and FA(x) satisfies the condition 0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3.

For convenience, “simple valued neutrosophic set” is abbreviated to
“neutrosophic set” later.

Definition 2.2. ([7]) Let A be a neutrosophic set in a subtraction
algebra X and α, β, γ ∈ [0, 1] with 0 ≤ α+β+γ ≤ 3 and an (α, β, γ)-level

set of X denoted by A(α,β,γ) is defined as

A(α,β,γ) = {x ∈ X|TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ}.
For any family {ai|i ∈ Λ}, we define∨

{ai|i ∈ Λ} :=

{
max{ai|i ∈ Λ} if Λ is finite,

sup{ai|i ∈ Λ} otherwise

and ∧
{ai|i ∈ Λ} :=

{
min{ai|i ∈ Λ} if Λ is finite,

inf{ai|i ∈ Λ} otherwise.

3. Neutrosophic ideals

In what follows, let X be a subtraction algebra unless otherwise spec-
ified.

Definition 3.1. A neutrosophic set A in X is called a neutrosophic
subalgebra of X if it satisfies:
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(3.1) (∀x, y ∈ X)(TA(x−y)≥min{TA(x), TA(y)}, IA(x−y)≥min{IA(x),
IA(y)}, and FA(x− y) ≤ max{FA(x), FA(y)}).

Proposition 3.2. Every neutrosophic subalgebra of X satisfies the
following conditions:

(3.2) (∀x ∈ X)(TA(0) ≥ TA(x), IA(0) ≥ IA(x), and FA(0) ≤ FA(x)).

Proof. Straightforward.

Example 3.3. Let X := {0, 1, 2, 3} be a subtraction algebra [6] with
the following table:

− 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 1
3 3 2 1 0

Define a neutrosophic set A in X as follows:

TA : X → [0, 1], x 7→
{

0.84 if x ∈ {0, 3}
0.13 if x ∈ {1, 2},

IA : X → [0, 1], x 7→
{

0.84 if x ∈ {0, 3}
0.13 if x ∈ {1, 2},

and

FA : X → [0, 1], x 7→
{

0.11 if x ∈ {0, 3}
0.83 if x ∈ {1, 2}.

It is easy to check that A is a neutrosophic subalgebra of X.

Theorem 3.4. Let A be a neutrosophic set in X and let α, β, γ ∈
[0, 1] with 0 ≤ α+β+γ ≤ 3. Then A is a neutrosophic subalgebra of X

if and only if all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when

A(α,β,γ) 6= ∅.

Proof. Assume thatA is a neutrosophic subalgebra ofX. Let α, β, γ ∈
[0, 1] be such that 0 ≤ α+β+γ ≤ 3 and A(α,β,γ) 6= ∅. Let x, y ∈ A(α,β,γ).
Then TA(x) ≥ α, TA(y) ≥ α, IA(x) ≥ β, IA(y) ≥ β and FA(x) ≤
γ, FA(y) ≤ γ. Using (3.1), we have TA(x−y) ≥ min{TA(x), TA(y)} ≥ α,
IA(x−y) ≥ min{IA(x), IA(y)} ≥ β, and FA(x−y) ≤ max{FA(x), FA(y)}
≤ γ. Hence x− y ∈ A(α,β,γ). Therefore A(α,β,γ) is a subalgebra of X.

Conversely, all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when

A(α,β,γ) 6= ∅. Assume that there exist at, bt, ai, bi ∈ X and af , bf ∈ X
such that TA(at − bt) < min{TA(at), TA(bt)}, IA(ai − bi)} < min{IA(ai),
IA(bi)} and FA(af − bf ) > max{FA(af ), FA(bf )}. Then TA(at − bt) <
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α1 ≤ min{TA(at), TA(bt)}, IA(ai − bi) < β1 ≤ min{IA(ai), IA(bi)} and
FA(af − bf ) > γ1 ≥ max{FA(af ), FA(bf )} for some α1, β1 ∈ (0, 1] and

γ1 ∈ [0, 1). Hence at, bt, ai, bi ∈ A(α1,β1,γ1), and af , bf ∈ A(α1,β1,γ1).

But at − bt, ai − bi /∈ A(α1,β1,γ1), and af − bf /∈ A(α1,β1,γ1), which is
a contradiction. Hence TA(x − y) ≥ min{TA(x), TA(y)}, IA(x − y) ≥
min{IA(x), IA(y)}, and FA(x−y) ≤ max{TA(x), TA(y)} for any x, y, z ∈
X. Therefore A is a neutrosophic subalgebra of X.

Since [0, 1] is a completely distributive lattice with respect to the
usual ordering, we have the following theorem.

Theorem 3.5. If {Ai|i ∈ N} is a family of neutrosopic subalgebras
of X, then ({Ai|i ∈ N},⊆) forms a complete distributive lattice.

Theorem 3.6. Let A be a neutrosophic subalgebra of X. If there ex-
ists a sequence {an} in X such that limn→∞ TA(an)=1, limn→∞ IA(an)=
1, and limn→∞ FA(an) = 0, then TA(0) = 1, IA(0) = 1, and FA(0) = 0.

Proof. By Proposition 3.2, we have TA(0) ≥ TA(x), IA(0) ≥ IA(x),
and FA(0) ≤ FA(x) for all x ∈ X. Hence we have TA(0) ≥ TA(an),
IA(0) ≥ IA(an), and FA(0) ≤ FA(an) for every positive integer n. There-
fore 1 = limn→∞ TA(an) ≤ TA(0) ≤ 1, 1 = limn→∞ IA(an) ≤ IA(0) ≤ 1,
and 0 ≤ FA(0) ≤ limn→∞ FA(an) = 0. Thus we have TA(0) = 1, IA(0) =
1, and FA(0) = 0.

Proposition 3.7. If every neutrosophic subalgebra A of X satisfies
the condition

(3.3) (∀x, y ∈ X)(TA(x−y) ≥ TA(y), IA(x−y) ≥ IA(y), and FA(x−y) ≤
FA(y)),

then TA, IA, and FA are constant functions.

Proof. It follows from (3.3) that TA(x) = TA(x−0) ≥ TA(0), IA(x) =
IA(x− 0) ≥ IA(0), and FA(x) = FA(x− 0) ≤ FA(0) for any x ∈ X. By
Proposition 3.2, we have TA(x) = TA(0), IA(x) = IA(0), and FA(x) =
FA(0) for any x ∈ X. Hence TA, IA, and FA are constant functions.

Theorem 3.8. Every subalgebra of X can be represented as an
(α, β, γ)-level set of a neutrosophic subalgebra A of X.

Proof. Let S be a subalgebra of X and let A be a neutrosophic sub-
algebra of X. Define a neutrosophic set A in X as follows:

TA : X → [0, 1], x 7→
{
α1 if x ∈ S
α2 otherwise,
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IA : X → [0, 1], x 7→
{
β1 if x ∈ S
β2 otherwise,

FA : X → [0, 1], x 7→
{
γ1 if x ∈ S
γ2 otherwise,

where α1, α2, β1, β2 ∈ (0, 1] and γ1, γ2 ∈ [0, 1) with α1 > α2, β1 >
β2, γ1 < γ2, and 0 ≤ α1 + β1 + γ1 ≤ 3, 0 ≤ α2 + β2 + γ2 ≤ 3. Ob-
viously, S = A(α1,β1,γ1). We now prove that A is a neutrosophic sub-
algebra of X. Let x, y ∈ X. If x, y ∈ S, then x − y ∈ S because
S is a subalgebra of X. Hence TA(x) = TA(y) = TA(x − y) = α1,
IA(x) = IA(y) = IA(x−y) = β1, FA(x) = FA(y) = FA(x−y) = γ1 and so
TA(x−y) ≥ min{TA(x), TA(y)}, IA(x−y) ≥ min{IA(x), IA(y)}, FA(x−
y) ≤ max{FA(x), FA(y)}. If x ∈ S and y /∈ S, then TA(x) = α1, TA(y) =
α2 , IA(x) = β1, IA(y) = β2, FA(x) = γ1, FA(y) = γ2 and so TA(x−y) ≥
min{TA(x), TA(y)} = α2, IA(x − y) ≥ min{IA(x), IA(y)} = β2, FA(x −
y) ≤ max{FA(x), FA(y)} = γ2. Obviously, if x /∈ S and y /∈ S, then
TA(x− y) ≥ min{TA(x), TA(y)} = α2, IA(x− y) ≥ min{IA(x), IA(y)} =
β2, FA(x−y) ≤ max{FA(x), FA(y)} = γ2. Therefore A is a neutrosophic
subalgebra of X.

Theorem 3.9. Let A be a neutrosophic set of X and let α, β, γ ∈
[0, 1] with 0 ≤ α + β + γ ≤ 3. Define a neutrosophic set A∗ in X as
follows:

TA∗ : X → [0, 1], x 7→
{
TA(x) if x ∈ A(α,β,γ)

0 otherwise,

IA∗ : X → [0, 1], x 7→
{
IA(x) if x ∈ A(α,β,γ)

0 otherwise,

and

FA∗ : X → [0, 1], x 7→
{
FA(x) if x ∈ A(α,β,γ)

1 otherwise.

If A is a neutrosophic subalgebra of X, then so is A∗.

Proof. Let A be a neutrosophic subalgebra of X. By Theorem 3.4,
all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X. If x, y ∈ A(α,β,γ),

then x − y ∈ A(α,β,γ). Hence we have TA∗(x − y) = TA(x − y) ≥
min{TA(x), TA(y)} = min{TA∗(x), TA∗(y)}, IA∗(x − y) = IA(x − y) ≥
min{IA(x), IA(y)} = min{IA∗(x), IA∗(y)}, and FA∗(x − y) = FA(x −
y) ≤ max{FA(x), FA(y)} = max{FA∗(x), FA∗(y)} for any x, y ∈ X. If

x /∈ A(α,β,γ) or y /∈ A(α,β,γ), then TA∗(x) = 0, IA∗(x) = 0, FA∗(x) = 1
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or TA∗(y) = 0, IA∗(y) = 0, FA∗(y) = 1. Therefore we get TA∗(x − y) ≥
min{TA∗(x), TA∗(y)} = 0, IA∗(x − y) ≥ min{IA∗(x), IA∗(y)} = 0, and
FA∗(x − y) ≤ max{TA∗(x), TA∗(y)} = 1 for any x, y ∈ X. Thus A∗ is a
neutrosophic subalgebra of X.

Definition 3.10. A neutrosophic set A in X is called a neutrosophic
ideal of X if it satisfies (3.2) and

(3.4) (∀x, y ∈ X)(TA(x) ≥ min{TA(x− y), TA(y)}, IA(x) ≥ min{IA(x−
y), IA(y)}, and FA(x) ≤ max{FA(x− y), FA(y)}).

Proposition 3.11. Every neutrosophic ideal of X is a neutrosophic
subalgebra of X.

Proof. Let A be a neutrosophic ideal of X. Put x := x−y and y := x
in (3.4). Then we have TA(x−y) ≥ min{TA((x−y)−x), TA(x)}, IA(x−
y) ≥ min{IA((x − y) − x), IA(x)}, and FA(x − y) ≤ max{FA((x − y) −
x), FA(x)}. It follows from (a3) and (3.2) that TA(x−y) ≥ min{TA((x−
x)− y), TA(x)} = min{TA(0), TA(x)} ≥ min{TA(x), TA(y)}, IA(x− y) ≥
min{IA((x − y) − x), IA(x)} = min{IA(0), IA(x)} ≥ min{IA(x), IA(y)},
and FA(x− y) ≤ max{FA((x− y)− x), FA(x)} = max{FA(0), FA(x)} ≤
max{FA(x), FA(y)}, for any x, y ∈ X. Thus A is a neutrosophic subal-
gebra of X.

The converse of Proposition 3.11 may not be true in general (see
Example 3.12.)

Example 3.12. (a) Let X := {0, a, b, c} be a subtraction algebra [2]
with the following table:

− 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

Define a neutrosophic set A in X as follows:

TA : X → [0, 1], x 7→
{

0.72 if x ∈ {0, a}
0.11 if x ∈ {b, c},

IA : X → [0, 1], x 7→
{

0.72 if x ∈ {0, a}
0.11 if x ∈ {b, c},

and

FA : X → [0, 1], x 7→
{

0.13 if x ∈ {0, a}
0.71 if x ∈ {b, c}.
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It is easy to check that A is a neutrosophic ideal of X.
(b) Let X = {0, 1, 2, 3} be a subtraction algebra as in Example 3.3.
Define a neutrosophic set B in X as follows:

TB : X → [0, 1], x 7→

 0.53 if x = 0
0.22 if x ∈ {1, 2}
0.13 if x = 3,

IB : X → [0, 1], x 7→

 0.53 if x = 0
0.22 if x ∈ {1, 2}
0.13 if x = 3,

and

FB : X → [0, 1], x 7→

 0.11 if x = 0
0.25 if x ∈ {1, 2}
0.46 if x = 3.

It is easy to check that B is a neutrosophic subalgebra of X. But it is not
a neutrosophic ideal of X, since TB(3) = 0.13 � min{TB(3−1), TB(1)} =
max{TB(2), TB(1)} = 0.22.

Theorem 3.13. Let A be a neutrosophic set in X and let α, β, γ ∈
[0, 1] with 0 ≤ α+β+γ ≤ 3. Then A is a neutrosophic ideal of X if and

only if all of (α, β, γ)-level set A(α,β,γ) are ideals of X when A(α,β,γ) 6= ∅.

Proof. Assume that A is a neutrosophic ideal of X. Let α, β, γ ∈
[0, 1] be such that 0 ≤ α + β + γ ≤ 3 and A(α,β,γ) 6= ∅. Let x, y ∈
X be such that x − y, y ∈ A(α,β,γ). Then TA(x − y) ≥ α, TA(y) ≥
α, IA(x−y) ≥ β, IA(y) ≥ β, and FA(x−y) ≤ γ, FA(y) ≤ γ. By Definition
3.10, we have TA(0) ≥ TA(x) ≥ min{TA(x − y), TA(y)} ≥ α, IA(0) ≥
IA(x) ≥ min{IA(x−y)), IA(y)} ≥ β, and FA(0) ≤ FA(x) ≤ max{FA(x−
y), TA(y)} ≤ γ. Hence 0, x ∈ A(α,β,γ). Therefore A(α,β,γ) is an ideal of
X.

Conversely, suppose that there exist a, b, c ∈ X such that TA(0) <
TA(a), IA(0) < IA(b), and FA(0) > FA(c). Then there exist at, bt ∈ (0, 1]
and ct ∈ [0, 1) such that TA(0) < at ≤ TA(a), IA(0) < bt ≤ IA(b) and

FA(0) > ct ≥ FA(c). Hence 0 /∈ A(at,bt,ct), which is a contradiction.
Therefore TA(0) ≥ TA(x), IA(0) ≥ IA(x) and FA(0) ≤ FA(x) for all x ∈
X. Assume that there exist at, bt, ai, bi, af , bf ∈ X such that TA(at) <
min{TA(at−bt), TA(bt)}, IA(ai) < min{IA(ai−bi), IA(bi)}, and FA(af ) >
max{TA(af − bf ), TA(bf )}. Then there exist st, si ∈ (0, 1] and sf ∈
[0, 1) such that TA(at) < st ≤ min{TA(at − bt), TA(bt)}, IA(ai) < si ≤
min{IA(ai − bi), IA(bi)}, and FA(af ) > sf ≥ max{TA(af − bf ), TA(bf )}.
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Hence at−bt, bt, ai−bi, af−bf ∈ A(st,si,sf ), and bt, bi, bf ∈ A(st,si,sf ). But

at, ai /∈ A(st,si,sf ) and af /∈ A(st,si,sf ). This is a contradiction. Therefore
TA(x) ≥ min{TA(x − y), TA(y)}, IA(x) ≥ min{IA(x − y)), IA(y)} and
FA(x) ≤ max{FA(x − y), FA(y)}, for any x, y ∈ X. Therefore A is a
neutrosophic ideal of X.

Proposition 3.14. Every neutrosophic ideal A of X satisfies the
following properties:

(i) (∀x, y ∈ X)(x ≤ y ⇒ TA(x) ≥ TA(y), IA(x) ≥ IA(y), FA(x) ≤
FA(y)),

(ii) (∀x, y, z ∈ X)(x − y ≤ z ⇒ TA(x) ≥ min{TA(y), TA(z)}, IA(x) ≥
min{IA(y), IA(z)}, FA(x) ≤ max{FA(y), FA(z)}).

Proof. (i) Let x, y ∈ X be such that x ≤ y. Then x − y = 0. Using
(3.4) and (3.2), we have TA(x) ≥ min{TA(x − y), TA(y)} = min{TA(0),
TA(y)} = TA(y), IA(y) ≥ min{IA(x − y), IA(y)} = min{IA(0), IA(y)} =
IA(y), and FA(x) ≤ max{FA(x − y), FA(y)} = max{FA(0), FA(y)} =
FA(y).
(ii) Let x, y, z ∈ X be such that x − y ≤ z. By (3.4) and (3.2), we
get TA(x − y) ≥ min{TA((x − y) − z), TA(z)} = min{TA(0), TA(z)} =
TA(z), IA(x − y) ≥ min{IA((x − y) − z), IA(z)} = min{IA(0), IA(z)} =
IA(z), and FA(x−y) ≤ max{FA((x−y)−z), FA(z)}=max{FA(0), FA(z)}
= FA(z). Hence TA(x) ≥ min{TA(x − y), TA(y)} ≥ min{TA(y), TA(z)},
IA(x) ≥ min{IA(x − y), IA(y)} ≥ min{IA(y), IA(z)}, and FA(x) ≤
max{FA(x− y), FA(y)} ≤ max{FA(y), FA(z)}, for any x, y, z ∈ X.

The following corollary is easily proved by induction.

Corollary 3.15. Every neutrosophic ideal A of X satisfies the fol-
lowing property:

(3.5) (∀x, a1, · · · , an ∈ X)((· · · (x − a1) − · · · ) − an = 0 ⇒ TA(x) ≥∧n
k=1 TA(ak), IA(x) ≥

∧n
k=1 IA(ak), and FA(x) ≤

∨n
k=1 FA(ak)).

Definition 3.16. Let A and B be neutrosophic sets of a set X. The
union of A and B is defined to be a neutrosophic set

A∪̃B := {〈x, TA∪B(x), IA∪B(x), FA∪B(x)〉|x ∈ X},
where TA∪B(x) = max{TA(x), TB(x)}, IA∪B(x) = max{IA(x), IB(x)},
FA∪B(x) = min{FA(x), FB(x)}, for all x ∈ X. The intersection of A
and B is defined to be a neutrosophic set

A∩̃B := {〈x, TA∩B(x), IA∩B(x), FA∩B(x)〉|x ∈ X},
where TA∩B(x) = min{TA(x), TB(x)}, IA∩B(x) = min{IA(x), IB(x)},
FA∩B(x) = max{FA(x), FB(x)}, for all x ∈ X.
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Theorem 3.17. The intersection of two neutrosophic ideals of X is
also a neutrosophic ideal of X.

Proof. Let A and B be neutrosophic ideals of X. For any x ∈
X, we have TA∩B(0) = min{TA(0), TB(0)} ≥ min{TA(x), TB(x)} =
TA∩B(x), IA∩B(0) = min{TA(0), TB(0)} ≥ min{IA(x), IB(x)}=IA∩B(x),
and FA∩B(0) = max{FA(0), FB(0)} ≤ max{FA(x), FB(x)} = FA∩B(x).
Let x, y ∈ X. Then we have

TA∩B(x) = min{TA(x), TB(x)}
≥min{min{TA(x− y), TA(y)},min{TB(x− y), TB(y)}}
= min{min{TA(x− y), TB(x− y)},min{TA(y), TB(y)}}
= min{TA∩B(x− y), TA∩B(y)},

IA∩B(x) = min{IA(x), IB(x)}
≥min{min{IA(x− y), IA(y)},min{IB(x− y), IB(y)}}
= min{min{IA(x− y), IB(x− y)},min{IA(y), IB(y)}}
= min{IA∩B(x− y), IA∩B(y)},

and

FA∩B(x) = max{FA(x), FB(x)}
≤max{max{FA(x− y), FA(y)},max{FB(x− y), FB(y)}}
= max{max{FA(x− y), FB(x− y)},max{FA(y), FB(y)}}
= max{FA∩B(x− y), FA∩B(y)}.

Hence A∩̃B is a neutrosophic ideal of X.

Corollary 3.18. If {Ai|i ∈ N} is a family of neutrosophic ideals of
X, then so is ∩̃i∈NAi.

Proposition 3.19. Let A be a neutrosophic ideal of X. Then XT :=
{x ∈ X|TA(x) = TA(0)}, XT := {x ∈ X|IA(x) = IA(0)}, and XF :=
{x ∈ X|FA(x) = FA(0)} are ideals of X.

Proof. Clearly, 0 ∈ XT . Let x− y, y ∈ XT . Then TA(x− y) = TA(0)
and TA(y) = TA(0). It follows from (3.4) that TA(x) ≥ min{TA(x −
y), TA(y)} = TA(0). By (3.2), we get TA(x) = TA(0). Hence x ∈ XT .
Therefore XT is an ideal of X. By a similar way, XI and XF are ideals
of X.

Let f : X → Y be a function of sets. If

M = {〈y, TM (y), IM (y), FM (y)〉|y ∈ Y }
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is a neutrosophic set of a set Y , then the preimage of M under f is
defined to be a neutrosophic set

f−1(M) := {〈x, f−1(TM )(x), f−1(IM )(x), f−1(FM )(x)〉|x ∈ X}
of X, where f−1(TM )(x) = TM (f(x)), f−1(IM )(x) = IM (f(x)) and
f−1(FM )(x) = FM (f(x)) for all x ∈ X.

Theorem 3.20. Let f : X → Y be a homomorphism of subtraction
algebras. If M = {〈y, TM (y), IM (y), FM (y)〉|y ∈ Y } is a neutrosophic
subalgebra of Y , then the preimage of M under f is a neutrosophic
subalgebra of X.

Proof. Let f−1(M) be the preimage of M under f . For any x, y ∈ X,
we have

f−1(TM (x− y)) =TM (f(x− y)) = TM (f(x)− f(y))

≥min{TM (f(x)), TM (f(y))}
= min{f−1(TM )(x), f−1(TM )(y)},

f−1(IM (x− y)) =IM (f(x− y)) = IM (f(x)− f(y))

≥min{IM (f(x)), IM (f(y))}
= min{f−1(IM )(x), f−1(IM )(y)},

and

f−1(FM (x− y)) =FM (f(x− y)) = FM (f(x)− f(y))

≤max{FM (f(x)), FM (f(y))}
= max{f−1(FM )(x), f−1(FM )(y)}.

Hence f−1(M) is a neutrosophic subalgebra of X.

Let f : X → Y be an onto function of sets. If A is a neutrosophic set
of X, then the image of A under f is defined to be a neutrosophic set

f(A) := {〈y, f(TA)(y), f(IA)(y), f(FA)(y)〉|y ∈ Y }
of Y , where f(TA)(y) =

∨
x∈f−1(y) TA(x), f(IA)(y) =

∨
x∈f−1(y) IA(x),

and f(FA)(y) =
∧
x∈f−1(y) FA(x).

Theorem 3.21. For an onto homomorphism f : X → Y of subtrac-
tion algebras, let A be a neutrosophic set of X such that

(3.6) (∀C ⊆ X)(∃x0 ∈ C)(TA(x0) =
∨
z∈C TA(z), IA(x0) =

∨
z∈C IA(z),

FA(x0) =
∧
z∈C FA(z)).

If A is a neutrosophic subalgebra of X, then the image of A under f is
a neutrosophic subalgebra of Y .
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Proof. Let f(A) be the image of A under f . Let a, b ∈ Y . Then
f−1(a) 6= ∅ and f−1(b) 6= ∅ in X. By (3.6), there exist xa ∈ f−1(a) and
xb ∈ f−1(b) such that

TA(xa) =
∨

z∈f−1(a)

TA(z), IA(xa) =
∨

z∈f−1(a)

IA(z), FA(xa)

=
∧

z∈f−1(a)

FA(z),

TA(xb) =
∨

w∈f−1(b)

TA(w), IA(xb) =
∨

w∈f−1(b)

IA(w), FA(xb)

=
∧

w∈f−1(b)

FA(w).

Thus

f(TA)(a− b) =
∨

x∈f−1(a−b)

TA(x) ≥ TA(xa − xb) ≥ min{TA(xa), TA(xb)}

= min{
∨

z∈f−1(a)

TA(z),
∨

w∈f−1(b)

TA(w)}

= min{f(TA)(a), f(TA)(b)},

f(IA)(a− b) =
∨

x∈f−1(a−b)

IA(x) ≥ IA(xa − xb) ≥ min{IA(xa), IA(xb)}

= min{
∨

z∈f−1(a)

IA(z),
∨

w∈f−1(b)

IA(w)}

= min{f(IA)(a), f(IA)(b)},

and

f(FA)(a− b) =
∧

x∈f−1(a−b)

FA(x) ≤ FA(xa − xb) ≤ max{FA(xa), FA(xb)}

= max{
∧

z∈f−1(a)

FA(z),
∧

w∈f−1(b)

FA(w)}

= max{f(FA)(a), f(FA)(b)}.

Hence f(A) is a neutrosophic subalgebra of Y .
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