ON THE STABILITY OF A CUBIC-QUADRATIC SET-VALUED FUNCTIONAL EQUATION

Yang-Hi Lee

$$
\begin{aligned}
& \text { Abstract. In this paper, I prove the stability of the following set- } \\
& \text { valued functional equation } \\
& \qquad \begin{aligned}
& f(x+2 y) \oplus f(x-2 y) \oplus 3 f(2 x) \oplus f(-2 x) \\
& \qquad=4 f(x+y) \oplus 4 f(x-y) \oplus 10 f(x)
\end{aligned}
\end{aligned}
$$

by employing the direct method in the sense of Hyers and Ulam.

1. Introduction

In 1940, Ulam [18] proposed the problem concerning the stability of group homomorphisms. In 1941, Hyers [7] gave an affirmative answer to this problem for additive mappings between Banach spaces. Subsequently many mathematicians came to deal with this problem (cf. $[6,16])$. Many mathematicians investigated the stability of several types of set-valued functional equations $[4,8,9,12,13,14]$. The following terminologies used in this paper will be adopted from the article of Kenary et al. [9].

Throughout this paper, unless otherwise stated, let X be a real vector space and Y be a Banach space with the norm $\|\cdot\|_{Y}$. We denote by $C_{b}(Y), C_{c}(Y)$ and $C_{c b}(Y)$ the set of all closed bounded subsets of Y, the set of all closed convex subsets of Y and the set of all closed convex bounded subsets of Y, respectively. Let A and B be two nonempty subsets of Y and $\lambda \in \mathbb{R}$. The addition and the scalar multiplication can be defined as follows

$$
A+B=\{a+b \mid a \in A, b \in B\} \text { and } \lambda A=\{\lambda a \mid a \in A\} .
$$

[^0]Furthermore, for the subsets $A, B \in C_{c}(Y)$, we write $A \oplus B=\overline{A+B}$, where $\overline{A+B}$ denotes the closure of $A+B$. Generally, for arbitrary $\lambda, \mu \in \mathbb{R}^{+}$, we can obtain that

$$
\lambda A+\lambda B=\lambda(A+B) \text { and }(\lambda+\mu) A \subset \lambda A+\mu A
$$

In particular, if A is convex, then we have $(\lambda+\mu) A=\lambda A+\mu A$. For $A, B \in C_{b}(Y)$, the Hausdorff distance between A and B is defined by

$$
h(A, B):=\inf \left\{\varepsilon>0 \mid A \subset B+\varepsilon \overline{S_{1}}, B \subset A+\varepsilon \overline{S_{1}}\right\}
$$

where S_{1} denotes the closed unit ball in Y, i.e., $S_{1}=\left\{y \in Y \mid\|y\|_{Y} \leq 1\right\}$. Since Y is a Banach space, it is proved that $\left(C_{c b}(Y), \oplus, h\right)$ is a complete metric semigroup [3]. Rädström [15] proved that $\left(C_{c b}(Y), \oplus, h\right)$ can be isometrically embedded in a Banach space. The following are some properties of the Hausdorff distance.

Lemma 1.1. (Castaing and Valadier [3]). For any $A_{1}, A_{2}, B_{1}, B_{2}$, $C \in C_{c b}(Y)$ and $\lambda \in \mathbb{R}^{+}$, the following expressions hold
(i) $h\left(A_{1} \oplus A_{2}, B_{1} \oplus B_{2}\right) \leq h\left(A_{1}, B_{1}\right)+h\left(A_{2}, B_{2}\right)$;
(ii) $h\left(\lambda A_{1}, \lambda B_{1}\right)=\lambda h\left(A_{1}, B_{1}\right)$;
(iii) $h\left(A_{1} \oplus C, B_{1} \oplus C\right)=h\left(A_{1}, B_{1}\right)$.

In particular, $h(A, C)=h(A \oplus B, B \oplus C) \leq h(A, B)+h(B, C)$ for any $A, B, C \in C_{c b}(Y)$ from (i) and (iii) in Lemma 1.1.

The main purpose of this paper is to establish the stability of the following cubic-quadratic set-valued functional equation

$$
\begin{align*}
f(x+2 y) & \oplus f(x-2 y) \oplus 3 f(2 x) \oplus f(-2 x) \\
& =4 f(x+y) \oplus 4 f(x-y) \oplus 10 f(x) \tag{1}
\end{align*}
$$

by employing the direct method in the sense of P. Gǎvruta [6] and the fixed point method in the sense of L. Cădariu and V. Radu([1, 2]), respectively. Every solution of the set-valued functional equation (1) is called a cubic-quadratic set-valued mapping.

2. Stability of the cubic-quadratic set-valued functional equation (1)

Throughout this paper, let V and W be real vector spaces.

For a given mapping $f: V \rightarrow W$, we use the following abbreviations

$$
\begin{aligned}
Q f(x, y):= & f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
C f(x, y):= & f(x+2 y)-3 f(x-y)+3 f(x)-f(x-y)-6 f(y) \\
E f(x, y):= & f(x+2 y)-4 f(x-y)+6 f(x)-4 f(x-y)+f(x-2 y) \\
D f(x, y):= & f(x+2 y)-4 f(x+y)-4 f(x-y)+f(x-2 y) \\
& -10 f(x)+3 f(2 x)+f(-2 x)
\end{aligned}
$$

for all $x, y \in V$. A solution of $Q f=0$ and $C f=0$ are called a quadratic mapping and a cubic mapping, respectively. Now we will show that f is a cubic-quadratic mapping if f is a solution of the functional equation $D f(x, y)=0$ for all $x, y \in V$.

The following lemmas were proved in [11].
Lemma 2.1. (Theorem 2.2 [11]) Suppose that the odd function f : $V \rightarrow W$ satisfies $E f(x, y)=0$ for all $x, y \in V$ and $f(2 x)=8 f(x)$ for all $x \in V$. Then f is a cubic mapping.

Lemma 2.2. (Theorem 2.4 [11]) Suppose that the even function $f: V \rightarrow W$ satisfies $E f(x, y)=0$ for all $x, y \in V$ and $f(2 x)=4 f(x)$ for all $x \in V$. Then f is a quadratic mapping.

Theorem 2.3. A mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in V$ if and only if f is a cubic-quadratic mapping.

Proof. If a mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in$ V, then the odd mapping f_{o} satisfies the equalities $f_{o}(2 x)-8 f_{o}(x)=$ $\frac{D f_{o}(x, 0)-D f_{o}(-x, 0)}{4}=0$ and $E f_{o}(x, y)=D f_{o}(x, y)=0$ for all $x, y \in V$. Since $f(0)=\frac{D f(0,0)}{12}=0$, the even mapping f_{e} satisfies the equalities $f_{e}(2 x)-4 f_{e}(x)=\frac{D f(0, x)}{2}=0$ and $E f_{e}(x, y)=D f_{e}(x, y)=0$ for all $x, y \in V$. It follows from Lemma 2.1 and Lemma 2.2 that f_{o} is a cubic mapping and f_{e} is a quadratic mapping.

Conversely, assume that f_{1} and f_{2} are mappings such that the equalities $f:=f_{1}+f_{2}, Q f_{1}(x, y)=0$ and $C f_{2}(x, y)=0$ hold for all $x, y \in V$. Then the equalities $f_{1}(x)=f_{1}(-x), f_{2}(x)=-f_{2}(-x), f_{1}(2 x)=4 f_{1}(x)$ and $f_{2}(2 x)=8 f_{2}(x)$ hold for all $x \in V$. From the above properties, we obtain the equalities

$$
\begin{aligned}
& D f_{1}(x, y)=Q f_{1}(x, 2 y)-4 Q f_{1}(x, y) \\
& D f_{2}(x, y)=C f_{2}(x, y)-C f_{2}(x-y, y)
\end{aligned}
$$

for all $x, y \in V$, i.e.

$$
D f(x, y)=D f_{1}(x, y)+D f_{2}(x, y)=0
$$

for all $x, y \in V$ as we desired.

In this section, we shall consider the stability of the set-valued functional equation (1) by employing the direct method.

Theorem 2.4. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\Phi(x, y)=\sum_{n=0}^{\infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{4^{n}}<\infty \tag{2}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $f: X \rightarrow C_{c b}(Y)$ is a mapping satisfying

$$
\begin{align*}
& h(f(x+2 y) \oplus f(x-2 y) \oplus 3 f(2 x) \oplus f(-2 x) \\
& 4 f(x+y)\oplus 4 f(x-y) \oplus 10 f(x)) \leq \varphi(x, y) \tag{3}
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique cubic-quadratic mapping $F: X \rightarrow C_{c b}(Y)$ such that

$$
\begin{equation*}
h(f(x), F(x)) \leq \sum_{n=0}^{\infty}\left(\frac{2^{n}+1}{4 \cdot 8^{n}} \varphi\left(2^{n} x, 0\right)+\frac{2^{n}-1}{4 \cdot 8^{n}} \varphi\left(-2^{n} x, 0\right)\right) \tag{4}
\end{equation*}
$$

for all $x \in X$. In particular, F is represented by

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty}\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right) \tag{5}
\end{equation*}
$$

for all $x \in X$.
Proof. Setting $y=0$ in (3), we have

$$
h(16 f(x), 3 f(2 x) \oplus f(-2 x))=h(2 f(x) \oplus 3 f(2 x) \oplus f(-2 x), 18 f(x))
$$

$$
\begin{equation*}
\leq \varphi(x, 0) \tag{6}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{n} x$ in (6) and dividing both sides by $2 \cdot 8^{n+1}$, from the equality (ii) in Lemma 1.1, we get

$$
h\left(\frac{f\left(2^{n} x\right)}{8^{n}}, \frac{3 f\left(2^{n+1} x\right)}{2 \cdot 8^{n+1}} \oplus \frac{f\left(-2^{n+1} x\right)}{2 \cdot 8^{n+1}}\right) \leq \frac{\varphi\left(2^{n} x, 0\right)}{2 \cdot 8^{n+1}}
$$

for all $x \in X$ and $n \in \mathbb{N}$. By the above inequality and the inequality(i) in Lemma 1.1, we have the inequalities

$$
\begin{aligned}
& h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right),\right. \\
& \left.\frac{2^{n+1}+1}{2 \cdot 8^{n+1}} f\left(2^{n+1} x\right) \oplus \frac{2^{n+1}-1}{2 \cdot 8^{n+1}} f\left(-2^{n+1} x\right)\right) \\
& \leq h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right), \frac{3\left(2^{n}+1\right)}{4 \cdot 8^{n+1}} f\left(2^{n+1} x\right) \oplus \frac{2^{n}+1}{4 \cdot 8^{n+1}} f\left(-2^{n+1} x\right)\right) \\
& +h\left(\frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right), \frac{3\left(2^{n}-1\right)}{4 \cdot 8^{n+1}} f\left(-2^{n+1} x\right) \oplus \frac{2^{n}-1}{4 \cdot 8^{n+1}} f\left(2^{n+1} x\right)\right) \\
& \leq \frac{2^{n}+1}{4 \cdot 8^{n}} \varphi\left(2^{n} x, 0\right)+\frac{2^{n}-1}{4 \cdot 8^{n}} \varphi\left(-2^{n} x, 0\right)
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbb{N}$. From the above inequality and the property $h(A, C) \leq h(A, B)+h(B, C)$, we obtain the inequalities

$$
\begin{align*}
& h\left(f(x), \frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right) \\
& \leq \sum_{k=0}^{n-1} h\left(\frac{2^{k}+1}{2 \cdot 8^{k}} f\left(2^{k} x\right) \oplus \frac{2^{k}-1}{2 \cdot 8^{k}} f\left(-2^{k} x\right)\right. \\
&\left.\frac{2^{k+1}+1}{2 \cdot 8^{k+1}} f\left(2^{k+1} x\right) \oplus \frac{2^{k+1}-1}{2 \cdot 8^{k+1}} f\left(-2^{k+1} x\right)\right) \\
& \leq \sum_{k=0}^{n-1}\left(\frac{2^{k}+1}{4 \cdot 8^{k}} \varphi\left(2^{k} x, 0\right)+\frac{2^{k}-1}{4 \cdot 8^{k}} \varphi\left(-2^{k} x, 0\right)\right) \tag{8}
\end{align*}
$$

for all $x \in X$ and $n \in \mathbb{N}$. Now we claim that the sequence $\left\{\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus\right.$ $\left.\frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right\}$ is a Cauchy sequence in $\left(C_{c b}(Y), h\right)$. Indeed, for all
$m, n \in \mathbb{N}$, by (8), we can show that

$$
\begin{aligned}
& h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right),\right. \\
& \quad \frac{2^{n+m}+1}{\left.2 \cdot 8^{n+m} f\left(2^{n+m} x\right) \oplus \frac{2^{n+m}-1}{2 \cdot 8^{n+m}} f\left(-2^{n+m} x\right)\right)} \\
& \quad \leq \sum_{k=n}^{m+n-1}\left(\frac{2^{k}+1}{4 \cdot 8^{k}} \varphi\left(2^{k} x, 0\right)+\frac{2^{k}-1}{4 \cdot 8^{k}} \varphi\left(-2^{k} x, 0\right)\right) \\
& \quad \leq \sum_{k=n}^{m+n-1} \frac{\varphi\left(2^{k} x, 0\right)+\varphi\left(-2^{k} x, 0\right)}{2 \cdot 4^{k}}
\end{aligned}
$$

for all $x \in X$. From the condition (2), it follows that the last expression tends to zero as $n \rightarrow \infty$. So the sequence $\left\{\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right\}$ is a Cauchy sequence. Therefore, from the completeness of $C_{c b}(Y)$, we can define a set-valued mapping $F: X \rightarrow C_{c b}(Y)$ represented by

$$
F(x)=\lim _{n \rightarrow \infty}\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right)
$$

for all $x \in X$. Next, we show that F satisfies the set-valued functional equation (1). Replacing x and y by $\frac{x}{2 n}$ and $\frac{y}{2 n}$ in (3), respectively, we

$$
\begin{aligned}
& h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n}(x+2 y)\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n}(x+2 y)\right) \oplus \frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n}(x-2 y)\right)\right. \\
& \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n}(x-2 y)\right) \oplus \frac{3\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n+1} x\right) \\
& \oplus \frac{3\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n+1} x\right) \oplus \frac{2^{n}+1}{2 \cdot 8^{n}} f\left(-2^{n+1} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(2^{n+1} x\right) \\
& \oplus \frac{4\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n}(x+y)\right) \oplus \frac{4\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n}(x+y)\right) \\
& \oplus \frac{4\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n}(x-y)\right) \oplus \frac{4\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n}(x-y)\right) \\
&\left.\oplus \frac{10\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{10\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right) \\
& \leq \frac{1}{4^{n}} h\left(f\left(2^{n}(x+2 y)\right) \oplus f\left(2^{n}(x-2 y)\right) \oplus 3 f\left(2^{n+1} x\right) \oplus f\left(-2^{n+1} x\right)\right. \\
&\left.4 f\left(2^{n}(x+y)\right) \oplus 4 f\left(2^{n}(x-y)\right) \oplus 10 f\left(2^{n} x\right)\right) \\
&+\frac{1}{4^{n}} h\left(f\left(-2^{n}(x+2 y)\right) \oplus f\left(2^{n}(2 y-x)\right) \oplus 3 f\left(-2^{n+1} x\right) \oplus f\left(2^{n+1} x\right),\right. \\
& \leq\left.4 f\left(-2^{n}(x+y)\right) \oplus 4 f\left(-2^{n}(x-y)\right) \oplus 10 f\left(-2^{n} x\right)\right) \\
& \leq \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y\right)+\frac{1}{4^{n}} \varphi\left(-2^{n} x,-2^{n} y\right) .
\end{aligned}
$$

Since the last expression tends to zero as $n \rightarrow \infty$, we obtain that F is a cubic-quadratic set-valued mapping. Moreover, letting $n \rightarrow \infty$ in (8), we get the desired inequality (4). To prove the uniqueness of F. Assume that F^{\prime} is another cubic-quadratic set-valued mapping satisfying the inequality (4). Since the mappings F and F^{\prime} are cubic-quadratic setvalued mappings, the equalities $F^{\prime}(x)=\frac{2^{n}+1}{2 \cdot 8^{n}} F^{\prime}\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} F^{\prime}\left(-2^{n} x\right)$
and $F(x)=\frac{2^{n}+1}{2 \cdot 8^{n}} F\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} F\left(-2^{n} x\right)$ are obtained from the functional equation (1). Thus we can infer that

$$
\begin{aligned}
& h\left(F(x), F^{\prime}(x)\right) \\
= & h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} F\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} F\left(-2^{n} x\right), \frac{2^{n}+1}{2 \cdot 8^{n}} F^{\prime}\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} F^{\prime}\left(-2^{n} x\right)\right) \\
\leq & h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} F\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} F\left(-2^{n} x\right), \frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right) \\
+ & h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right), \frac{2^{n}+1}{2 \cdot 8^{n}} F^{\prime}\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} F^{\prime}\left(-2^{n} x\right)\right) \\
\leq & \frac{2^{n}+1}{2 \cdot 8^{n}} h\left(F\left(2^{n} x\right), f\left(2^{n} x\right)\right)+\frac{2^{n}-1}{2 \cdot 8^{n}} h\left(F\left(-2^{n} x\right), f\left(-2^{n} x\right)\right) \\
& +\frac{2^{n}+1}{2 \cdot 8^{n}} h\left(f\left(2^{n} x\right), F^{\prime}\left(2^{n} x\right)\right)+\frac{2^{n}-1}{2 \cdot 8^{n}} h\left(f\left(-2^{n} x\right), F^{\prime}\left(-2^{n} x\right)\right) \\
\leq & \frac{2^{n}+1}{4 \cdot 8^{n}} \sum_{k=0}^{\infty}\left(\frac{2^{k}+1}{8^{k}} \varphi\left(2^{k+n} x, 0\right)+\frac{2^{k}-1}{8^{k}} \varphi\left(-2^{k+n} x, 0\right)\right) \\
& +\frac{2^{n}-1}{4 \cdot 8^{n}} \sum_{k=0}^{\infty}\left(\frac{2^{k}+1}{8^{k}} \varphi\left(-2^{k+n} x, 0\right)+\frac{2^{k}-1}{8^{k}} \varphi\left(2^{k+n} x, 0\right)\right) \\
\leq & \frac{1}{2 \cdot 4^{n}} \sum_{k=0}^{\infty}\left(\frac{1}{4^{k}} \varphi\left(2^{k+n} x, 0\right)+\frac{1}{4^{k}} \varphi\left(-2^{k+n} x, 0\right)\right) \\
& +\frac{1}{2 \cdot 4^{n}} \sum_{k=0}^{\infty}\left(\frac{1}{4^{k}} \varphi\left(-2^{k+n} x, 0\right)+\frac{1}{4^{k}} \varphi\left(2^{k+n} x, 0\right)\right) \\
\leq & \sum_{k=n}^{\infty}\left(\frac{1}{4^{k}} \varphi\left(2^{k} x, 0\right)+\frac{1}{4^{k}} \varphi\left(-2^{k} x, 0\right)\right) .
\end{aligned}
$$

It is easy to see from the condition (2) that the last expression tends to zero as $n \rightarrow \infty$ i.e. $F(x)=F^{\prime}(x)$ for all $x \in X$. This completes the proof of this theorem.

3. Stability of the cubic-quadratic set-valued functional equation (1): The fixed point method

In this section, we will investigate the stability of the set-valued functional equation (1) by using the fixed point theorem.

We recall the following result of the fixed point theory by Margolis and Diaz.

Theorem 3.1. ([5] or [17]) Suppose that a complete generalized metric space (X, d), which means that the metric d may assume infinite values, and a strictly contractive mapping $J: X \rightarrow X$ with the Lipschitz constant $0<L<1$ are given. Then, for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=+\infty, \forall n \in \mathbb{N} \cup\{0\}
$$

or there exists a nonnegative integer k such that:
(1) $d\left(J^{n} x, J^{n+1} x\right)<+\infty$ for all $n \geq k$;
(2) the sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in $Y:=\left\{y \in X, d\left(J^{k} x, y\right)<+\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq(1 /(1-L)) d(y, J y)$ for all $y \in Y$.

Theorem 3.2. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists a positive constant $L<1$ satisfying

$$
\begin{equation*}
4 L \varphi(x, y) \geq \varphi(2 x, 2 y) \tag{10}
\end{equation*}
$$

for all $x, y \in X$. Assume that $f: X \rightarrow C_{c b}(Y)$ is the a set-valued mapping with $f(0)=\{0\}$ and satisfies the inequality (3) for all $x, y \in X$. Then there exists a unique cubic-quadratic mapping $F: X \rightarrow C_{c b}(Y)$ such that

$$
\begin{equation*}
h(f(x), F(x)) \leq \frac{\varphi(x, 0)+\varphi(-x, 0)}{16(1-L)} \tag{11}
\end{equation*}
$$

for all $x \in X$. In particular, F is represented by (5) for all $x \in X$.
Proof. Consider the set $S=\left\{g \mid g: X \rightarrow C_{c b}(Y), g(0)=\{0\}\right\}$ and introduce the generalized metric d on S, which is defined by
$d\left(g_{1}, g_{2}\right)=\inf \left\{\mu \in(0, \infty) \mid h\left(g_{1}(x), g_{2}(x)\right) \leq \mu(\varphi(x, 0)+\varphi(-x, 0)), \forall x \in X\right\}$,
where, as usual, $\inf \emptyset=\infty$. It can be easily verified that (S, d) is a complete generalized metric space (see [10]). Now, we define an operator $T: S \rightarrow S$ by

$$
T g(x)=\frac{3 g(2 x) \oplus g(-2 x)}{16}
$$

for all $x \in X$. Let $g_{1}, g_{2} \in S$ be given such that $d\left(g_{1}, g_{2}\right)=\varepsilon$, i.e.

$$
h\left(g_{1}(x), g_{2}(x)\right) \leq \varepsilon(\varphi(x, 0)+\varphi(-x, 0))
$$

for all $x \in X$. Thus, we obtain that

$$
\begin{aligned}
h\left(T g_{1}(x), T g_{2}(x)\right) & =h\left(\frac{3 g_{1}(2 x) \oplus g_{1}(-2 x)}{16}, \frac{3 g_{2}(2 x) \oplus g_{2}(-2 x)}{16}\right) \\
& \leq \frac{3}{16} h\left(g_{1}(2 x), g_{2}(2 x)\right)+\frac{1}{16} h\left(g_{1}(-2 x), g_{2}(-2 x)\right) \\
& \leq \frac{\varepsilon}{4}(\varphi(2 x, 0)+\varphi(-2 x, 0)) \\
& \leq L \varepsilon(\varphi(x, 0)+\varphi(-x, 0))
\end{aligned}
$$

for all $x \in X$. Therefore, we know that $d\left(T g_{1}, T g_{2}\right) \leq L d\left(g_{1}, g_{2}\right)$ which means that T is a strictly contractive mapping with the Lipschitz constant $L<1$. Moreover, we see that

$$
\begin{aligned}
h(f(x), T f(x)) & =h\left(f(x), \frac{3 f(2 x) \oplus f(-2 x)}{16}\right) \\
& \leq \frac{\varphi(x, 0)}{16} \\
& \leq \frac{\varphi(x, 0)+\varphi(-x, 0)}{16}
\end{aligned}
$$

for all $x \in X$ from the inequality (6). It means that $d(f, T f) \leq \frac{1}{16}<\infty$ by the definition of d. By Theorem 3.1, there exists a set-valued mapping $F: X \rightarrow C_{c b}(Y)$ satisfying the following:
(i) F is a fixed point of T, i.e., $F(x)=\frac{3 F(2 x) \oplus F(-2 x)}{16}$ for all $x \in X$. Further, F is the unique fixed point of T in the set $\{g \in S \mid d(f, g)<\infty\}$, which means that there exists an $\eta \in(0, \infty)$ such that $h(f(x), F(x)) \leq$ $\eta(\varphi(x, 0)+\varphi(-x, 0))$ for all $x \in X$.
(ii) $d\left(T^{n} f, F\right) \rightarrow 0$ as $n \rightarrow \infty$. Then we get

$$
F(x)=\lim _{n \rightarrow \infty} T^{n}(x)=\lim _{n \rightarrow \infty}\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right)
$$

for all $x \in X$.
(iii) $d(f, F) \leq \frac{1}{1-L} d(f, T f)$. Then we have $d(f, F) \leq \frac{1}{16(1-L)}$, which implies the inequality (11) holds.
Next, we show that F satisfies the inequality (3). Replacing x and y by
$\frac{x}{2 n}$ and $\frac{y}{2 n}$ in (3), respectively, we get

$$
\begin{aligned}
& h\left(\frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n}(x+2 y)\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n}(x+2 y)\right) \oplus \frac{2^{n}+1}{2 \cdot 8^{n}} f\left(2^{n}(x-2 y)\right)\right. \\
& \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(-2^{n}(x-2 y)\right) \oplus \frac{3\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n+1} x\right) \\
& \oplus \frac{3\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n+1} x\right) \oplus \frac{2^{n}+1}{2 \cdot 8^{n}} f\left(-2^{n+1} x\right) \oplus \frac{2^{n}-1}{2 \cdot 8^{n}} f\left(2^{n+1} x\right), \\
& \frac{4\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n}(x+y)\right) \oplus \frac{4\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n}(x+y)\right) \\
& \oplus \frac{4\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n}(x-y)\right) \oplus \frac{4\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n}(x-y)\right) \\
&\left.\oplus \frac{10\left(2^{n}+1\right)}{2 \cdot 8^{n}} f\left(2^{n} x\right) \oplus \frac{10\left(2^{n}-1\right)}{2 \cdot 8^{n}} f\left(-2^{n} x\right)\right) \\
& \leq \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y\right)+\frac{1}{4^{n}} \varphi\left(-2^{n} x,-2^{n} y\right) \\
& \leq L^{n}(\varphi(x, y)+\varphi(-x,-y)) .
\end{aligned}
$$

Since $L<1$, the last expression tends to zero as $n \rightarrow \infty$. By the definition of f, we conclude that F is a cubic-quadratic set-valued mapping. If F is a cubic-quadratic set-valued mapping, then we can replacing x and y in (1) by 0 and x, respectively. So we get $F(x)=\frac{3 F(2 x) \oplus F(-2 x)}{16}$, i.e. F is a fixed point of T. Therefore and F is a unique mapping satisfying the inequality (11) by (i).

References

[1] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
[2] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitäet, Graz, Graz, Austria, 346 (2004), 43-52.
[3] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, in: Lec. Notes in Math., vol. 580, Springer, Berlin, 1977.
[4] H.Y. Chu, A. Kim and S.Y. Yoo, On the stability of the generalized cubic setvalued functional equation, Appl. Math. Lett., 37 (2014) 7-14.
[5] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222-224.
[8] S.Y. Jang, C. Park and Y. Cho, Hyers-Ulam stability of a generalized additive set-valued functional equation, J. Inequal. Appl., 2013, 2013:101.
[9] H.A. Kenary and H. Rezaei et al., On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory Appl., (2012) 2012:81.
[10] H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl., 324 (2006), 358-372.
[11] Y.-H. Lee, On the generalized Hyers-Ulam stability of the generalized polynomial function of Degree 3, Tamsui Oxf. J. Math. Sci., 24 (2008) 429-444.
[12] G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett., 24 (2011) 1312-1316.
[13] C. Park, D. O'Regan and R. Saadati, Stability of some seset-valued functional equations, Appl. Math. Lett., 24 (2011) 1910-1914.
[14] M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequat. Math., 85 (2013) 111-118.
[15] H. Rädström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3 (1952) 165-169.
[16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[17] I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979(in Romanian).
[18] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.

Yang-Hi Lee
Department of Mathematics Education, Gongju National University of Education, Gongju 314-711, Korea,
E-mail: yanghi2@hanmail.net

[^0]: Received November 9, 2018. Accepted January 14, 2019.
 2010 Mathematics Subject Classification. 39B82, 39B52.
 Key words and phrases. stability, cubic-quadratic set-valued functional equation, direct method.

