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ON THE STABILITY OF A CUBIC-QUADRATIC

SET-VALUED FUNCTIONAL EQUATION

Yang-Hi Lee

Abstract. In this paper, I prove the stability of the following set-
valued functional equation

f(x + 2y) ⊕ f(x− 2y) ⊕ 3f(2x) ⊕ f(−2x)

= 4f(x + y) ⊕ 4f(x− y) ⊕ 10f(x)

by employing the direct method in the sense of Hyers and Ulam.

1. Introduction

In 1940, Ulam [18] proposed the problem concerning the stability of
group homomorphisms. In 1941, Hyers [7] gave an affirmative answer
to this problem for additive mappings between Banach spaces. Sub-
sequently many mathematicians came to deal with this problem (cf.
[6, 16]). Many mathematicians investigated the stability of several types
of set-valued functional equations [4, 8, 9, 12, 13, 14]. The following ter-
minologies used in this paper will be adopted from the article of Kenary
et al. [9].

Throughout this paper, unless otherwise stated, let X be a real vector
space and Y be a Banach space with the norm ‖ · ‖Y . We denote by
Cb(Y ), Cc(Y ) and Ccb(Y ) the set of all closed bounded subsets of Y ,
the set of all closed convex subsets of Y and the set of all closed convex
bounded subsets of Y , respectively. Let A and B be two nonempty
subsets of Y and λ ∈ R. The addition and the scalar multiplication can
be defined as follows

A+B = {a+ b|a ∈ A, b ∈ B} and λA = {λa|a ∈ A}.
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Furthermore, for the subsets A,B ∈ Cc(Y ), we write A ⊕ B = A+B,
where A+B denotes the closure of A + B. Generally, for arbitrary
λ, µ ∈ R+, we can obtain that

λA+ λB = λ(A+B) and (λ+ µ)A ⊂ λA+ µA.

In particular, if A is convex, then we have (λ + µ)A = λA + µA. For
A,B ∈ Cb(Y ), the Hausdorff distance between A and B is defined by

h(A,B) := inf{ε > 0|A ⊂ B + εS1, B ⊂ A+ εS1},

where S1 denotes the closed unit ball in Y , i.e., S1 = {y ∈ Y |‖y‖Y ≤ 1}.
Since Y is a Banach space, it is proved that (Ccb(Y ),⊕, h) is a complete
metric semigroup [3]. Rädström [15] proved that (Ccb(Y ),⊕, h) can be
isometrically embedded in a Banach space. The following are some
properties of the Hausdorff distance.

Lemma 1.1. ( Castaing and Valadier [3]). For any A1, A2, B1, B2,
C ∈ Ccb(Y ) and λ ∈ R+, the following expressions hold

(i) h(A1 ⊕A2, B1 ⊕B2) ≤ h(A1, B1) + h(A2, B2);

(ii) h(λA1, λB1) = λh(A1, B1);

(iii) h(A1 ⊕ C,B1 ⊕ C) = h(A1, B1).

In particular, h(A,C) = h(A ⊕ B,B ⊕ C) ≤ h(A,B) + h(B,C) for
any A,B,C ∈ Ccb(Y ) from (i) and (iii) in Lemma 1.1.

The main purpose of this paper is to establish the stability of the
following cubic-quadratic set-valued functional equation

f(x+ 2y)⊕ f(x− 2y)⊕ 3f(2x)⊕ f(−2x)

= 4f(x+ y)⊕ 4f(x− y)⊕ 10f(x)(1)

by employing the direct method in the sense of P. Gǎvruta [6] and the
fixed point method in the sense of L. Cădariu and V. Radu([1, 2]),
respectively. Every solution of the set-valued functional equation (1) is
called a cubic-quadratic set-valued mapping.

2. Stability of the cubic-quadratic set-valued functional equa-
tion (1)

Throughout this paper, let V and W be real vector spaces.
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For a given mapping f : V →W , we use the following abbreviations

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Cf(x, y) := f(x+ 2y)− 3f(x− y) + 3f(x)− f(x− y)− 6f(y),

Ef(x, y) := f(x+ 2y)− 4f(x− y) + 6f(x)− 4f(x− y) + f(x− 2y),

Df(x, y) := f(x+ 2y)− 4f(x+ y)− 4f(x− y) + f(x− 2y)

− 10f(x) + 3f(2x) + f(−2x)

for all x, y ∈ V . A solution of Qf = 0 and Cf = 0 are called a quadratic
mapping and a cubic mapping, respectively. Now we will show that f is
a cubic-quadratic mapping if f is a solution of the functional equation
Df(x, y) = 0 for all x, y ∈ V .

The following lemmas were proved in [11].

Lemma 2.1. (Theorem 2.2 [11]) Suppose that the odd function f :
V →W satisfies Ef(x, y) = 0 for all x, y ∈ V and f(2x) = 8f(x) for all
x ∈ V . Then f is a cubic mapping.

Lemma 2.2. (Theorem 2.4 [11]) Suppose that the even function
f : V →W satisfies Ef(x, y) = 0 for all x, y ∈ V and f(2x) = 4f(x) for
all x ∈ V . Then f is a quadratic mapping.

Theorem 2.3. A mapping f : V → W satisfies Df(x, y) = 0 for all
x, y ∈ V if and only if f is a cubic-quadratic mapping.

Proof. If a mapping f : V → W satisfies Df(x, y) = 0 for all x, y ∈
V , then the odd mapping fo satisfies the equalities fo(2x) − 8fo(x) =
Dfo(x,0)−Dfo(−x,0)

4 = 0 and Efo(x, y) = Dfo(x, y) = 0 for all x, y ∈ V .

Since f(0) = Df(0,0)
12 = 0, the even mapping fe satisfies the equalities

fe(2x) − 4fe(x) = Df(0,x)
2 = 0 and Efe(x, y) = Dfe(x, y) = 0 for all

x, y ∈ V . It follows from Lemma 2.1 and Lemma 2.2 that fo is a cubic
mapping and fe is a quadratic mapping.

Conversely, assume that f1 and f2 are mappings such that the equal-
ities f := f1 + f2, Qf1(x, y) = 0 and Cf2(x, y) = 0 hold for all x, y ∈ V .
Then the equalities f1(x) = f1(−x), f2(x) = −f2(−x), f1(2x) = 4f1(x)
and f2(2x) = 8f2(x) hold for all x ∈ V . From the above properties, we
obtain the equalities

Df1(x, y) = Qf1(x, 2y)− 4Qf1(x, y),

Df2(x, y) = Cf2(x, y)− Cf2(x− y, y)

for all x, y ∈ V , i.e.

Df(x, y) = Df1(x, y) +Df2(x, y) = 0
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for all x, y ∈ V as we desired.

In this section, we shall consider the stability of the set-valued func-
tional equation (1) by employing the direct method.

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that

(2) Φ(x, y) =
∞∑
n=0

ϕ(2nx, 2ny)

4n
<∞

for all x, y ∈ X. Suppose that f : X → Ccb(Y ) is a mapping satisfying

h(f(x+ 2y)⊕f(x− 2y)⊕ 3f(2x)⊕ f(−2x),

4f(x+ y)⊕ 4f(x− y)⊕ 10f(x)) ≤ ϕ(x, y)(3)

for all x, y ∈ X. Then there exists a unique cubic-quadratic mapping
F : X → Ccb(Y ) such that

(4) h(f(x), F (x)) ≤
∞∑
n=0

(
2n + 1

4 · 8n
ϕ (2nx, 0) +

2n − 1

4 · 8n
ϕ (−2nx, 0)

)

for all x ∈ X. In particular, F is represented by

(5) F (x) = lim
n→∞

(
2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx)

)
for all x ∈ X.

Proof. Setting y = 0 in (3), we have

h(16f(x), 3f(2x)⊕ f(−2x)) =h(2f(x)⊕ 3f(2x)⊕ f(−2x), 18f(x))

≤ϕ(x, 0)(6)

for all x ∈ X. Replacing x by 2nx in (6) and dividing both sides by
2 · 8n+1, from the equality (ii) in Lemma 1.1, we get

h

(
f (2nx)

8n
,
3f
(
2n+1x

)
2 · 8n+1

⊕
f
(
−2n+1x

)
2 · 8n+1

)
≤ ϕ (2nx, 0)

2 · 8n+1
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for all x ∈ X and n ∈ N. By the above inequality and the inequality(i)
in Lemma 1.1, we have the inequalities

h

(
2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx),

2n+1 + 1

2 · 8n+1
f(2n+1x)⊕ 2n+1 − 1

2 · 8n+1
f(−2n+1x)

)
≤h
(

2n + 1

2 · 8n
f(2nx),

3(2n + 1)

4 · 8n+1
f(2n+1x)⊕ 2n + 1

4 · 8n+1
f(−2n+1x)

)
+h

(
2n−1

2 · 8n
f(−2nx),

3(2n − 1)

4 · 8n+1
f(−2n+1x)⊕ 2n−1

4 · 8n+1
f(2n+1x)

)
≤2n + 1

4 · 8n
ϕ (2nx, 0) +

2n − 1

4 · 8n
ϕ (−2nx, 0)(7)

for all x ∈ X and n ∈ N. From the above inequality and the property
h(A,C) ≤ h(A,B) + h(B,C), we obtain the inequalities

h

(
f(x),

2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx)

)
≤

n−1∑
k=0

h

(
2k + 1

2 · 8k
f(2kx)⊕ 2k − 1

2 · 8k
f(−2kx),

2k+1 + 1

2 · 8k+1
f(2k+1x)⊕ 2k+1 − 1

2 · 8k+1
f(−2k+1x)

)
≤

n−1∑
k=0

(
2k + 1

4 · 8k
ϕ
(

2kx, 0
)

+
2k − 1

4 · 8k
ϕ
(
−2kx, 0

))
(8)

for all x ∈ X and n ∈ N. Now we claim that the sequence {2n+1
2·8n f(2nx)⊕

2n−1
2·8n f(−2nx)} is a Cauchy sequence in (Ccb(Y ), h). Indeed, for all
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m,n ∈ N, by (8), we can show that

h

(
2n + 1

2 · 8n
f(2nx)⊕2n − 1

2 · 8n
f(−2nx),

2n+m + 1

2 · 8n+m
f(2n+mx)⊕ 2n+m − 1

2 · 8n+m
f(−2n+mx)

)
≤

m+n−1∑
k=n

(
2k + 1

4 · 8k
ϕ
(

2kx, 0
)

+
2k − 1

4 · 8k
ϕ
(
−2kx, 0

))

≤
m+n−1∑
k=n

ϕ
(
2kx, 0

)
+ ϕ

(
−2kx, 0

)
2 · 4k

(9)

for all x ∈ X. From the condition (2), it follows that the last expression
tends to zero as n→∞. So the sequence {2n+1

2·8n f(2nx)⊕ 2n−1
2·8n f(−2nx)}

is a Cauchy sequence. Therefore, from the completeness of Ccb(Y ), we
can define a set-valued mapping F : X → Ccb(Y ) represented by

F (x) = lim
n→∞

(
2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx)

)

for all x ∈ X. Next, we show that F satisfies the set-valued functional
equation (1). Replacing x and y by x

2n and y
2n in (3), respectively, we
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get

h

(
2n + 1

2 · 8n
f(2n(x+ 2y))⊕ 2n − 1

2 · 8n
f(−2n(x+ 2y))⊕ 2n + 1

2 · 8n
f(2n(x− 2y))

⊕2n − 1

2 · 8n
f(−2n(x− 2y))⊕ 3(2n + 1)

2 · 8n
f(2n+1x)

⊕3(2n − 1)

2 · 8n
f(−2n+1x)⊕ 2n + 1

2 · 8n
f(−2n+1x)⊕ 2n − 1

2 · 8n
f(2n+1x),

⊕4(2n + 1)

2 · 8n
f(2n(x+ y))⊕ 4(2n − 1)

2 · 8n
f(−2n(x+ y))

⊕4(2n + 1)

2 · 8n
f(2n(x− y))⊕ 4(2n − 1)

2 · 8n
f(−2n(x− y))

⊕10(2n + 1)

2 · 8n
f(2nx)⊕ 10(2n − 1)

2 · 8n
f(−2nx)

)
≤ 1

4n
h
(
f(2n(x+ 2y))⊕ f(2n(x− 2y))⊕ 3f(2n+1x)⊕ f(−2n+1x),

4f(2n(x+ y))⊕ 4f(2n(x− y))⊕ 10f(2nx)
)

+
1

4n
h
(
f(−2n(x+ 2y))⊕ f(2n(2y − x))⊕ 3f(−2n+1x)⊕ f(2n+1x),

4f(−2n(x+ y))⊕ 4f(−2n(x− y))⊕ 10f(−2nx)
)

≤ 1

4n
ϕ (2nx, 2ny) +

1

4n
ϕ (−2nx,−2ny) .

Since the last expression tends to zero as n → ∞, we obtain that F is
a cubic-quadratic set-valued mapping. Moreover, letting n→∞ in (8),
we get the desired inequality (4). To prove the uniqueness of F . As-
sume that F ′ is another cubic-quadratic set-valued mapping satisfying
the inequality (4). Since the mappings F and F ′ are cubic-quadratic set-
valued mappings, the equalities F ′(x) = 2n+1

2·8n F
′(2nx) ⊕ 2n−1

2·8n F
′(−2nx)
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and F (x) = 2n+1
2·8n F (2nx) ⊕ 2n−1

2·8n F (−2nx) are obtained from the func-
tional equation (1). Thus we can infer that

h(F (x), F ′(x))

=h

(
2n + 1

2 · 8n
F (2nx)⊕ 2n − 1

2 · 8n
F (−2nx),

2n + 1

2 · 8n
F ′(2nx)⊕ 2n − 1

2 · 8n
F ′(−2nx)

)
≤h
(

2n + 1

2 · 8n
F (2nx)⊕ 2n − 1

2 · 8n
F (−2nx),

2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx)

)
+h

(
2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx),

2n + 1

2 · 8n
F ′(2nx)⊕ 2n − 1

2 · 8n
F ′(−2nx)

)
≤2n + 1

2 · 8n
h (F (2nx), f(2nx)) +

2n − 1

2 · 8n
h (F (−2nx), f(−2nx))

+
2n + 1

2 · 8n
h
(
f(2nx), F ′(2nx)

)
+

2n − 1

2 · 8n
h
(
f(−2nx), F ′(−2nx)

)
≤2n + 1

4 · 8n
∞∑
k=0

(
2k + 1

8k
ϕ
(

2k+nx, 0
)

+
2k − 1

8k
ϕ
(
−2k+nx, 0

))

+
2n − 1

4 · 8n
∞∑
k=0

(
2k + 1

8k
ϕ
(
−2k+nx, 0

)
+

2k − 1

8k
ϕ
(

2k+nx, 0
))

≤ 1

2 · 4n
∞∑
k=0

(
1

4k
ϕ
(

2k+nx, 0
)

+
1

4k
ϕ
(
−2k+nx, 0

))

+
1

2 · 4n
∞∑
k=0

(
1

4k
ϕ
(
−2k+nx, 0

)
+

1

4k
ϕ
(

2k+nx, 0
))

≤
∞∑
k=n

(
1

4k
ϕ
(

2kx, 0
)

+
1

4k
ϕ
(
−2kx, 0

))
.

It is easy to see from the condition (2) that the last expression tends to
zero as n → ∞ i.e. F (x) = F ′(x) for all x ∈ X. This completes the
proof of this theorem.

3. Stability of the cubic-quadratic set-valued functional equa-
tion (1): The fixed point method

In this section, we will investigate the stability of the set-valued func-
tional equation (1) by using the fixed point theorem.

We recall the following result of the fixed point theory by Margolis
and Diaz.
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Theorem 3.1. ([5] or [17]) Suppose that a complete generalized met-
ric space (X, d), which means that the metric d may assume infinite val-
ues, and a strictly contractive mapping J : X → X with the Lipschitz
constant 0 < L < 1 are given. Then, for each given element x ∈ X,
either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;

(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there
exists a positive constant L < 1 satisfying

(10) 4Lϕ(x, y) ≥ ϕ(2x, 2y)

for all x, y ∈ X. Assume that f : X → Ccb(Y ) is the a set-valued
mapping with f(0) = {0} and satisfies the inequality (3) for all x, y ∈ X.
Then there exists a unique cubic-quadratic mapping F : X → Ccb(Y )
such that

(11) h(f(x), F (x)) ≤ ϕ(x, 0) + ϕ(−x, 0)

16(1− L)

for all x ∈ X. In particular, F is represented by (5) for all x ∈ X.

Proof. Consider the set S = {g|g : X → Ccb(Y ), g(0) = {0}} and
introduce the generalized metric d on S, which is defined by

d(g1, g2)=inf{µ∈(0,∞)|h(g1(x), g2(x)) ≤ µ(ϕ(x, 0)+ϕ(−x, 0)),∀x∈X},

where, as usual, inf ∅ = ∞. It can be easily verified that (S, d) is a
complete generalized metric space (see [10]). Now, we define an operator
T : S → S by

Tg(x) =
3g (2x)⊕ g (−2x)

16

for all x ∈ X. Let g1, g2 ∈ S be given such that d(g1, g2) = ε, i.e.

h(g1(x), g2(x)) ≤ ε(ϕ(x, 0) + ϕ(−x, 0))
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for all x ∈ X. Thus, we obtain that

h(Tg1(x), T g2(x)) =h

(
3g1 (2x)⊕ g1 (−2x)

16
,
3g2 (2x)⊕ g2 (−2x)

16

)
≤ 3

16
h (g1 (2x) , g2 (2x)) +

1

16
h (g1 (−2x) , g2 (−2x))

≤ε
4

(ϕ (2x, 0) + ϕ (−2x, 0))

≤Lε(ϕ(x, 0) + ϕ(−x, 0))

for all x ∈ X. Therefore, we know that d(Tg1, T g2) ≤ Ld(g1, g2) which
means that T is a strictly contractive mapping with the Lipschitz con-
stant L < 1. Moreover, we see that

h(f(x), Tf(x)) = h

(
f(x),

3f (2x)⊕ f (−2x)

16

)
≤ϕ (x, 0)

16

≤ϕ(x, 0) + ϕ(−x, 0)

16

for all x ∈ X from the inequality (6). It means that d(f, Tf) ≤ 1
16 <∞

by the definition of d. By Theorem 3.1, there exists a set-valued mapping
F : X → Ccb(Y ) satisfying the following:

(i) F is a fixed point of T , i.e., F (x) = 3F (2x)⊕F (−2x)
16 for all x ∈ X.

Further, F is the unique fixed point of T in the set {g ∈ S|d(f, g) <∞},
which means that there exists an η ∈ (0,∞) such that h(f(x), F (x)) ≤
η(ϕ(x, 0) + ϕ(−x, 0)) for all x ∈ X.
(ii) d(Tnf, F )→ 0 as n→∞. Then we get

F (x) = lim
n→∞

Tn(x) = lim
n→∞

(
2n + 1

2 · 8n
f(2nx)⊕ 2n − 1

2 · 8n
f(−2nx)

)

for all x ∈ X.
(iii) d(f, F ) ≤ 1

1−Ld(f, Tf). Then we have d(f, F ) ≤ 1
16(1−L) , which

implies the inequality (11) holds.
Next, we show that F satisfies the inequality (3). Replacing x and y by
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x
2n and y

2n in (3), respectively, we get

h

(
2n + 1

2 · 8n
f(2n(x+ 2y))⊕ 2n − 1

2 · 8n
f(−2n(x+ 2y))⊕ 2n + 1

2 · 8n
f(2n(x− 2y))

⊕ 2n − 1

2 · 8n
f(−2n(x− 2y))⊕ 3(2n + 1)

2 · 8n
f(2n+1x)

⊕ 3(2n − 1)

2 · 8n
f(−2n+1x)⊕ 2n + 1

2 · 8n
f(−2n+1x)⊕ 2n − 1

2 · 8n
f(2n+1x),

4(2n + 1)

2 · 8n
f(2n(x+ y))⊕ 4(2n − 1)

2 · 8n
f(−2n(x+ y))

⊕ 4(2n + 1)

2 · 8n
f(2n(x− y))⊕ 4(2n − 1)

2 · 8n
f(−2n(x− y))

⊕ 10(2n + 1)

2 · 8n
f(2nx)⊕ 10(2n − 1)

2 · 8n
f(−2nx)

)
≤ 1

4n
ϕ (2nx, 2ny) +

1

4n
ϕ (−2nx,−2ny)

≤Ln(ϕ (x, y) + ϕ (−x,−y)).

Since L < 1, the last expression tends to zero as n→∞. By the defini-
tion of f , we conclude that F is a cubic-quadratic set-valued mapping. If
F is a cubic-quadratic set-valued mapping, then we can replacing x and

y in (1) by 0 and x, respectively. So we get F (x) = 3F (2x)⊕F (−2x)
16 , i.e.

F is a fixed point of T . Therefore and F is a unique mapping satisfying
the inequality (11) by (i).
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