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ON ALMOST ALPHA-COSYMPLECTIC MANIFOLDS
WITH SOME NULLITY DISTRIBUTIONS

HAKAN OZTURK

Abstract. The object of the paper is to investigate almost alpha-
cosymplectic (k,u,v) spaces. Some results on almost alpha-
cosymplectic (k, u, V) spaces with certain conditions are obtained.
Finally, we give an example on 3-dimensional case.

1. Introduction

It is well known that there exist contact metric manifolds M?"+!
whose curvature tensor R and the direction of the characteristic vector
field ¢ holds R(X,Y)¢ = 0 for any vector fields on M?"*1. Using a D-
homothetic deformation to a contact metric manifold with R(X,Y)¢ =
0, we get a contact metric manifold satisfying the following special con-
dition
(1) R(X,Y)E = n(Y)(KI + ph) X — n(X) (kI + ph)Y,

where k, u are constants and h is the self-adjoint (1, 1)-type tensor field.
This condition is called (k, u)-nullity on M?"*1. Contact metric mani-
folds with (k, p)-nullity condition studied for , u =const. in [1], [2]. In
[2], the author introduced contact metric manifold whose characteristic
vector field belongs to the (k, u)-nullity condition and proved that non-
Sasakian contact metric manifold was completely determined locally by
its dimension for the constant values of x and p.

Koufogiorgos and Tsichlias found a new class of 3-dimensional contact
metric manifolds that x and p are non-constant smooth functions. They

Received September 11, 2018. Revised October 19, 2018. Accepted October 19,
2018.

2010 Mathematics Subject Classification. 53C25, 53C35, 53D10.

Key words and phrases. Almost a-cosymplectic manifold, nullity distribution,
(K, p, v)-space.

This paper is supported by Afyon Kocatepe University Scientific Research Coor-
dination Unit with the project number 18 KARIYER.37.



270 Hakan Oztiirk

generalized (k, p)-contact metric manifolds on non-Sasakian manifolds
for n > 1, where the functions &, ;1 are constants, see [12].

Also, Olszak and Dacko extensively studied almost cosymplectic
(K, pt, v) manifolds. These manifolds whose almost cosymplectic struc-
tures (¢, &, n,g) holds the condition

(2) R(X,Y)¢=nY)(KI+ ph+voh)X —n(X)(kI + ph + voh)Y,

for K, p, v € Ry(M?"T1), where R, (M?" 1) be the subring of the ring of
smooth functions f on M?"*! such that df An = 0, see [11]. Such mani-
folds are called almost cosymplectic (k, 1, v)-spaces. The condition (2) is
invariant with respect to the D-homothetic deformations of these struc-
tures. The authors show that the integral submanifolds of the distribu-
tion D of such manifolds are locally flat Keahlerian manifolds and give
a new characterization which is established up to a D-homothetic defor-
mation of the almost cosymplectic manifolds. In [10], a complete local
description of almost cosymplectic (—1, i, 0)-spaces via "model spaces”
is given depending on the function p. When p is constant, the models
are Lie groups with a left-invariant almost cosymplectic structure.

Furthermore, the curvature properties of almost Kenmotsu manifolds
with special attention to (x, u)-nullity condition for x, u =const. and v =
0 are studied by Dileo and Pastore, see [4], [3]. In [4], the authors prove
that an almost Kenmotsu manifolds M?"*! is locally a warped product
of an almost Kaehler manifold and an open interval. If additionally
M?"*+ is locally symmetric then it is locally isometric to the hyperbolic
space H?"*t1 of constant sectional curvature ¢ = —1. We recall that
model spaces for almost cosymplectic case are given in [11], however
illustrative examples are not sufficiently available in the literature for an
almost a-cosymplectic manifold satisfying (2) with non-constant smooth
functions.

Section 2 is devoted to preliminaries on almost a-cosymplectic man-
ifolds. In section 3 the notion of almost a-cosymplectic (k, i, v)-spaces
in terms of a specific curvature condition are studied. Finally, in section
4 we investigate the existence of almost a-cosymplectic (k, i, v)-space
in 3-dimensional case and construct an example on such 3-dimensional

(K, p)-space.

2. Preliminaries

An almost contact metric manifold M?"*! is said to be almost a-
Kenmotsu if dn = 0 and d® = 2an AP, a being a non-zero real constant.
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Geometrical properties and examples of almost a-Kenmotsu manifolds
are studied in [14], [6], [15]. An almost Kenmotsu metric structure
(6,&,m,g) is given by the deformed structure

1 1
77‘7 "7af':afa¢':¢,g‘:?9,047é0,0661&

e
where « is a non-zero real constant. So we get an almost a-Kenmotsu
structure (¢',&',n',¢'). This deformation is called a homothetic defor-
mation, see [14], [15]. It is important to note that almost a-Kenmotsu
structures are related to some special local conformal deformations of
almost cosymplectic structures, see [6].

If we combine these two classes, we obtain a new notion defined by
dn = 0 and d® = 2an A ® called almost a-cosymplectic manifold for
any real number «, see [14]. Obviously, a normal almost a-cosymplectic
manifold is an a-cosymplectic manifold. An a-cosymplectic manifold is
either cosymplectic under the condition @ = 0 or a-Kenmotsu (« # 0)
for a € R.

Let M?"*+! be an almost a-cosymplectic manifold and

D= {X :y(X) = 0}.

Since the 1-form is closed, we have Lsn = 0 and [X,£] € D for any
X € D. The Levi-Civita connection satisfies V¢§ = 0 and V¢¢ € D,
which implies that VX € D for any X € D.

Now, we set A = —V¢& and h = %quﬁ for any vector fields X on
M?"*1 where « is a smooth function such that da An = 0. Obviously,
A(€) =0 and h(§) = 0. Moreover, the following relations are held

3) Vxé = —ad’X — ¢hX,
(4) (poh) X+ (hop)X =0, (p0A)X +(Aop)X = —2a0,

(5) (Vxn)Y = alg(X,Y)—n(X)n(Y)] + g(¢Y, hX),
(6) om = —2an, tr(h)=0,

Besides , we have
() (Vxo)Y + (Vx9)oY = —an(Y)oX + 2ag(¢X,Y)E — n(Y)hX,

for any vector fields X,Y on M?"*1 see [14].

Let (M?"1 ¢, ¢, m,g) be an almost a-cosymplectic manifold. We de-
note the curvature tensor and Ricci tensor of g by R and S respectively.
We define a self adjoint operator | = R(.,£)¢ called the Jacobi operator
with respect to €. Then we have the curvatures relations
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BR(X,Y)E = (Vyoh)X — (Vxoh)Y —an(X)phY —n(Y)phX]
+ [0+ &(a)] (X)Y —n(Y)X],

(9) IX = [0? +£(a)] ¢°X + 2a0hX — K2 X + ¢(Veh) X,
(10) IX — ¢lpX =2[(® + &(a))¢* X — h2X],

(11) (Veh)X = —¢lX — [a? + £(a)] ¢X — 20hX — B X,
(12) S(X,€) = —2n [o” + €(a)] n(X) — (div(¢h)) X,
(13) S(,6) = — [2n(a® + &(a)) + tr(h%)]

(14)

9(RexY,Z) — g(Rex @Y, 0Z) + g(Repx Y, ¢Z) + g(Regx Y, Z) =
2(Vax®)(Y, Z) +2(c® + &(a) [n(Y)g(X, Z) —n(2)g(X,Y)]

for any vector fields X,Y,Z on M?"t! where a is a smooth function
such that da A n =0, see [9].

Corollary 2.1. Let (M?"*1 ¢, & 1, g) be an almost a-cosymplectic
manifold. If the equation &(a)) = 0 holds then « is a constant function
such that da A n = 0. It follows that « is parallel along the character-
istic vector field £. Thus throughout the paper, we will accept it in this
context.

3. (k,u,v)-Spaces

In this section, we are especially interested in almost a-cosymplectic
manifolds whose almost a-cosymplectic structure (¢, &, 7, g) satisfies the
condition (2) for k,p,v € Ry(M?"*1). Such manifolds are said to be
almost a-cosymplectic (&, u, v)-spaces.

Proposition 3.1. The following relations are held on almost a-
cosymplectic (k, u, v)-space

(15) | = —k¢* + ph + voh,
(16) lp — ¢l = 2uhe + 2vh,

(17) h? = (k+a?)¢?, Kk < —a?,



On almost alpha-cosymplectic manifolds with some nullity distributions 273

(18) (Veh) = —gh+ (v — 20)h,
(19) Veh? = 2(v — 2a)(k + o) ¢,
(20) E(k) = 2(v — 2a)(k + o?),

Y, X)§—n(Y)X) + pu(g(hY, X)§
—n(Y)hX) + v(g(phY, X)§ —n(Y)phX),

(21)

(22) Q¢ = 2nkE,

(23) (Vx@)Y = g(apX + hX,Y)E —n(Y)(apX + hX),

(Vxoh)Y — (Vyoh)X = —(k+a?)(n(Y)X = n(X)Y) — pun(Y)hX

(24) +un(X)hY )+ (a—v)(n(Y)ohX —n(X)¢hY),
(Vxh)Y = (Vyh)X = (k+a?)(n(Y)eX —n(X)oY

(25) +29(¢X, Y)E) + p(n(Y)phX — n(X)phY')

+(a—v)(n(Y)hX —n(X)hY),

for all vector fields X,Y on M?"+1,

Proof. From (2) we get
(26) IX = R(X,6)¢ = k(X — n(X)€) + phX + vohX.
Replacing X by ¢X in (26), it gives

10X = k¢ X + pdhX + vo’hX.
Thus we have
10X — ¢IX = p(h¢ X — phX) — 20°h X,
so it completes the proof of (16). By using (26) we deduce
(27) PloX = ¢prdpX + dpudhX + ¢pr¢*hX.
Taking into account (26) and (27) we get
IX — glopX = —2kp*X.
Again using (26) we have
—26°X = 202> X — 2h° X,

which gives the proof of (17). Moreover, differentiating (17) along & we
get

(Veh)X = kX — uophX + vhX — a?¢pX — 2ahX + (k + o?)pX.
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Alternately, using (17), we obtain
Veh? =2(v — 2a)h*X.
The proof of (19) is obvious from (18). Then differentiating (19) along
& we find
2(v — 20)(k + a?)¢* X = [£(x)] 6°X.
Since g(R(&,X)Y, Z) = g(R(Y, Z)¢, X), we have
9(R(Y, 2)€, X) =rs(n(Z)g(Y, X) = n(Y)g(Z, X)) + n(n(Z)g(hY, X)
—n(Y)g(hZ, X)) +v(n(Z)g(ohY, X)—n(Y)g(phZ, X)).

The last equation completes the proof of (21). Contracting (21) with
respect to X, Y and using the definition of Ricci tensor, we obtain
2n+1

1=1
for any vector field Z. Thus (22) is clear. In addition, (22) implies that
9(RexY, Z) = [g(X,Y)n(Z) = n(Y)g(X, Z)] + pg(h X, Y)n(2)
—mn(Y)g(hX, Z) + v [g(ohY, X)n(Z) — n(Y)g(phX, Z)] .

Summing the left side of (14) with the help of the above equation for
&(a) =0, then we deduce

=2 [n(Y)g(X, Z2) = n(2)9(X,Y)].

Thus (14) reduces to

—26[n(Y)g(X, Z) —n(Z)9(X,Y)]

=2(Vix®)(Y, Z) + 2a°n(Y)g(X, Z) - 20*n(Z)g(X,Y)

—2an(Y)g(¢hX, Z) + 2an(Z)g(¢ohX,Y) + 2an(Z)g(¢hX,Y).
Also, we have
(28) —~(Vax®)(Y.Z2) = (v+a®)[n(Y)g(X,2) - n(Z)9(X,Y)]

—an(Y)g(ohX, Z) = n(Z)g(6hX,Y)].

Using (28) then we obtain (23). Then in view of (8), we also have
(Vxoh)Y — (Vyoh)X = —R(X,Y)¢
(0 +&(a)) N(X)Y = n(Y)X] — o [n(X)phY —n(Y)¢hX].
The proof of (24) is obvious from (2) and (25) is an immediate conse-
quence of (29). O

(29)

Remark 3.2. (23) shows that an almost a-cosymplectic (k, i, V)-
space satisfies the Kaehlerian condition.
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Theorem 3.3. The following differential equation is satisfied on al-
most a-cosymplectic (k, u, v)-space for

0=¢&(r)(n(Y)X —n(X)Y) +&(u)(n(Y)hX — n(X)hY)
(30) +H@)((Y)phX — n(X)phY) — X (k)¢*Y + X (u)hY

+X(V)phY — Y (u)hX — Y (v)ohX + Y (k)$p*X

+2(k + a?)pg(¢X, Y)E + 2ug(h X, phY )E.

for all vector fields X,Y .
Proof. Differentiating (2) along a vector field Z and using (3) we have

(VzR)(X,Y)E Z( ) (V)X = n(X)Y]+ Z() n(Y)hX — n(X)hY]
Z(v) n(Y)phX —n(X)phY] + k [ag(Z, X)Y]
k[—ag(X, 2)Y + g(X,ohZ)Y — g(Y,phZ)X]

1 [=g(Y,phZ)hX +n(Y) (V)X + ag(Y, Z)hX]

w[—ag(X, Z)RY + g(X, dhZ)hY — n(X)(Vh)Y]

viag(Y, Z)phX — g(Y,phZ)phX +n(Y)(Vzoh) X]
+v[-ag(X, Z)phY + g(X, phZ)phY —n(X)(Vzoh)Y]
—aR(X,Y)Z 4+ R(X,Y)¢hZ.

Next, using the last equation and the second Bianchi identity, we obtain

Y]+ Z(1) n(Y)hX — n(X)hY]
n(X)phY] + X (k) [n(2)Y —n(Y)Z]
(Y)hZ] + X(v) [n(Z2)phY —n(Y)phZ]

0=2(r) n(Y)X

( (
)X
(

- n(X

+ Z(v) [n(Y)phX —
+ X () [n(Z)hY —n
n(Z

+Y(x) [n(X)Z — |+ Y () [n(X)hZ — n(Z)hX]

+Y(v) n(X)phZ — n(Z)gphX] + pn[n(Y) (Vzh)X — (Vxh)Z)]

+un(Z) (Vxh)Y — (Vyh)X) +n(X) (Vyh)Z — (Vzh)Y)]

+v[n(Y) (Vzoh) X — (Vxoh)Z) +n(Z) (Vxoh)Y — (Vyoh) X))

+v[n(X) (Vyoh)Z — (Vz9h)Y)] + R(X,Y)dhZ + R(Y, Z)phX
X)Y

—a[R(X,Y)Z + R(Y, Z)X + R(Z, X)Y] + R(Z, X)phY
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for all vector fields X, Y, Z. Putting £ instead of Z in the above equation,
we obtain
0 = &(r) INY)X —n(X)Y]+ () n(Y)RX — n(X)hY]
HEW) 1Y )OhX — n(X)ghY] — X (k)6?Y + X (u)hY
+X(v)phY + Y (k)¢*X — Y (u)hX — Y (v)phX
+un(Y) [~ (& + a?)pX — pphX — (a — v)hX]
+u(r+a®) [n(Y)9X — n(X)pY +29(¢ X, Y)E]
2 (V)X — n(X)BRY] + (e = v) [1(Y )X = n(X)hY]
+un(X) [(k + )@Y + phdY + (a — v)hY]
+vn(Y) [—(k + ) * X + phX — (o — v)phX]|
—v(k+a®) [n(Y)X = n(X)Y] = vu[n(Y)hX —n(X)hY]
+v(a —v) p(Y)phX — n(X)ohY] + vn(X)(k + a?)¢*Y
+un(X) [~phY + (o — v)$hY] — R(£,Y)$hX + R(E, X)phY.
Finally, substituting (21), (24) and (25) in the last equation, we deduce
(30). O

Lemma 3.4. Let (M?*"! ¢ & n,9) be an almost a-cosymplectic
(k, p, v)-space. For every p € N, there exists neighborhood W of p and
orthonormal local vector fields X;, ¢ X; and & for i = 1,...,n, defined
on W, such that

(31) hX; = \X;, hoXi=—)\X;, h&=0,

fori=1,...,n, where A = \/— (k + a?2).

Proof. According to Koufogiorgos ([13], Lemma 4.2), the proof can
be easily carried out for almost a-cosymplectic (., i, v)-space. O

Theorem 3.5. Let (M?"*1 ¢, &,1,g) be an almost a-cosymplectic
(k, p, v)-space for n > 1. Then the functions k, i and v are non-constant
functions on M?"*! such that df An = 0.

Proof. By means of Lemma 1, the existence of a local orthonormal
basis {X;, pX;, &} such that

hei = Xei, hoei = —Aper, hé =0, A= /= (k + a?),

on W. Substituting X = e; and Y = ¢e; in (30), we obtain
lei(k) — Aei(p) — Apei(v)] de; + [Aei(v) — Adei(u) — ¢ei(r)] = 0.
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Since {e;, eX;} is linearly independent, we have

ei(k) — Aei() — Apei(v) =0,
(32) Nei(v) — Aes(p) — dei(x) = 0.

In addition, replacing X and Y by e; and e;, respectively, for i # j, (30)
provides that

ei(k) + Xe;j(p) =0,

(33) ei(v) =0.
Besides, substituting X = ¢e; and Y = ¢e; in (30) for i # j, we get
(34) pei(k) — Agei(p) =0, dei(v) =0

In view of (32), (34) and (33) we deduce
ei(k) = ei(n) = ei(v) = gei(r) = dei(p) = pei(v) = 0.

For an arbitrary function s, we obtain dk = £(k)n in the last equation
system. In this way, we have

(35) 0 =d*k = d(dr) = dé(r) A+ E(r)dn.

Since dn = 0, it follows that d§(xk) An = 0. Thus the proof is completed.
O

Corollary 3.6. The functions k,  and v are constants iff these func-
tions are constants along the characteristic vector field £ for almost -
cosymplectic (k, pi, v)-space with n > 1.

4. On Three Dimensional Case

In this section, we investigate the existence of almost a-cosymplectic
(K, pi, v)-space in 3-dimensional case.

Let U be the open subset of M3 where the tensor field & # 0 and let U’
be the open subset of points p € M? such that h = 0 in a neighborhood
of p. Thus the association set of U U U’ is an open and dense subset
of M3. For every p € U there exists an open neighborhood of p such
that he = Ae and hge = —A¢e, where A is a positive non-vanishing
smooth function. So every properties satisfying on U U U’ is valid on
M?3. Therefore, there exists a local orthonormal basis {e, e, £} of smooth
eigenfunctions of h in a neighborhood of p for every point p € U U U’.
This basis is called ¢-basis. So we state the following Lemma.
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Lemma 4.1. Let (M3, ¢,£,1,9) be an almost a-cosymplectic mani-
fold. Then we have the following relations for the covariant derivatives
on U

Vee = —ade, Vege = ae,

Vel = ae—Ape, Vgl = —Ae+ age,
Vee = boe—af, Ve = ce—af,
Vepe = —be+ X, Vgee = —coe+ A,

where a is a smooth function, b = g(Ve, ¢pe) and ¢ = g(V ge e, €) defined
by
1
b= o5 l(@e)(A) +ale)], ole) =S¢, e) = 9(Q¢,e),
and

. % (V) +o(¢e)], olde) = S(E, de) = g(QE, de),

respectively.
Proof. Replacing X by e and ¢e in (3), we get
Vel = ae — Ape, V& = age — Ae,
for any vector field X. Furthermore, we have

Vee = —g(e, Vede)pe
where a is defined by a = g(e, Vege). Following this procedure, the

other covariant derivative equalities can easily find. We recall that the
curvature tensor R is given by

R(X,Y)Z = -S8(X,2)Y + S(Y, 2)X — g(X, Z)QY
+9(Y, Z)QX + 5[9(X, 2)Y — g(Y, Z)X],

in dimension 3 for any vector fields X, Y, Z. Putting X =e, Y = ¢e and
Z = £ in the last equation, we obtain

R(@, ¢6)€ = _g(Qe’ 5)(;56 + Q(QQbQ, 5)6
Since o(X) = g(Q¢, X), we have
(37) R(e, pe)§ = —o(e)ge + a(ge)e,

for any vector field X. By using the curvature properties of the Rie-
mannian tensor, we also have

(36)

(38) R(e, pe)& = (2Ac — e(N))e + (—2Xb + (ge)(N))pe.
Thus combining (38) and (37), we deduce
(39) o(e) =2 b — (¢e)(N), a(pe) =2 c —e(N).

Hence, the functions b and ¢ are obvious from (39). O
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Proposition 4.2. Let (M3, $,¢,1,9) be an almost a-cosymplectic
manifold. On U, we have

(40) Veh = 2ahg + £(N)s,

where s is the tensor field of type (1,1) defined by s§ = 0, se = e and
spe = —pe.

Proof. First, differentiating of the tensor field h along £ we have
(Veh)e = —2Xage + £(N)e, (Veh)pe = =2 ae — E(X\)e.

In addition, we also have (V¢h)§ = 0. With the help of the last equation,
we obtain (40). It is notice that ¢tr(s) = 0. O

Proposition 4.3. Let (M3, $,¢,1,9) be an almost a-cosymplectic
manifold. Then we have

(41) h2 i OZQQbQ _ tr(l) ¢2.

Proof. Using (13), we get tr(l) = —2 [a? + A?] for all vector fields on
M?3. Besides, we have

h2e—a2¢2e _ tr2(l)¢267 h2¢e—a2¢3e _ @qﬁ%e.

It follows that h2%¢ — a?¢?¢ = @QSQ{ = 0. Thus it completes the
proof. O

Lemma 4.4. Let (M?3,¢,£,1,9) be an almost a-cosymplectic mani-
fold. Then the Ricci operator () satisfies the following relation

(42) Q = al +bn @&+ 2a0h+ ¢(Veh) — () @ €
+o(e)n ® e+ o(de)n @ ge,
where the smooth functions @ and b are defined by a = %r +a?+ )2 and
b= —%r — 3a% — 3\? respectively.
Proof. For 3-dimensional case, we deduce
IX =tr()X — S(X, )¢+ QX —n(X)Q§ — 5 (X —n(X)E),
for any vector field X. It follows that
QX = a?¢’X 4 2a0hX — h*X + ¢(Veh) X — tr(l) X
—S(X, )+ n(X)QE + 5 (X —n(X)E) .
Moreover, since S(X, &) = —S(¢2X, &) + n(X)tr(l), we have

(43) QX = "X | 20¢hX + ¢(Veh) X — ( )X
—S(¢*X, )¢ + n(X)tr(D)g + n(X)QE — 567
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and

(44) Q¢ = o(e)e + o(pe)pe + tr(l)E.
Next, using (43) and (44) we obtain

QX = [3r+a?+ X2 X + [—3r — 3% — 3\ n(X)¢

+2aphX + ¢(Veh) X — S(¢?X, €)€ + n(X)o(e)e + n(X)o(gpe)ge.
Thus (42) is obvious for any vector field X. O

Theorem 4.5. Let (M3, $,¢,7, g) be an almost a-cosymplectic man-
ifold. If o = 0, then the (k, p, v)-structure exists on every open and dense
subset of M?3.

Proof. Substituting ¢ = 0 and s = 1h in (42) we have

A
(45) Q:dl+l~m®§~l—2ah+(2a+£()\>\))¢h,

which yields
(46) Q¢ = tr(l)E,

for any vector fields on M?. Since C' = 0, taking ¢ instead of Z in (36)
we obtain

R(X,Y)E = —S(X,6)Y + S(Y,)X +n(Y)QX
—n(X)QY — 5[n(Y)X —n(X)Y],

and replacing X by & , then we get Q& = ¢r(l). Hence, it follows that
(48) S, &) =tr(l)n(Y),
for any vector field Y. Thus by virtue of (45), (46) and (48), we have

R(X,Y)E=—(®+22) (n(Y)X —n(X)Y)
+2a(n(Y)hX — n(X)hY) + (20 + Q) (n(Y)phX — (X)phY).

Therefore, we obtain x,u and v defined Kk = trél), = 2a and v =

(47)

200 + Q, respectively. ]

Theorem 4.6. Let (M3, $,¢,7, g) be an almost a-cosymplectic man-
ifold. If the following relation is held

(49) Qe — 9Q = f1ho + f2h,

then the manifold is an almost a-cosymplectic (k, p, v)-space, where the
functions f1, fo € C°.
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Proof. By the hypothesis, we have

a?¢? X + 2a0hX — h?X + ¢(Veh) X
= QX = 2tr()n(X)E + tr()X — 5 (X —n(X)E).

Applying ¢ both two sides of (50), we get

(50)

(51) —a?¢X — ¢h’X — 2ahX — (Veh)X = ¢QX + tr()¢pX — 56 X.
Also, replacing X by ¢X in (51), we find

—2¢X +2ahX — h2¢X + (Veh) X
— QX +tr(l)pX — Lo X.

Then combining (51) and (52) we deduce
QdX + ¢QX = =2 [a®¢ + ¢h*] X — 2tr(1)pX + roX.

(52)

Next, substituting (41) in the last equation and using (49), we obtain
Q6X + 6QX = —tr(1)pX +réX.

By virtue of (49), (51) and (52) we also obtain

(53) (Veh)X = L fihoX + L(fo — da)h X.

Using (53) in (42), we have

(54) QX =aX + bn(X)E + 2a0hX + 2 fihX + L(fo — 4a)phX,

for o = 0. Finally, substituting (54) in (47), we deduce

RX,Y)E = (tr(l) + — 3) [1(Y)X — n(X)Y]

+3fi Y)hX = n(X)hY]+ 5 f2 [n(Y)hX — n(X)¢hY].

Follows from (55), there exists a (k, u,v)-space where @ = ir + o® +
A2, O

(55)

Example 4.7. Let (M3, $,£,n,9) be an almost a-cosymplectic man-
ifold. Then there exists a (k, u, v)-structure such that

R(X,Y)¢ = k(n(Y)X = n(X)Y) + 2a(n(Y)hX — (X)RY)
+2a + ) ((Y)phX — n(X)hY),

where the functions k, pu,v € R%(M) defined by

dr = &(k)n, dp=&(p)n, dv=Ev)n.
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Now, let us consider ¢-basis on M3 such that he = \e, he = —\pe and
h& = 0. With respect to ¢-basis, we have

e(k) = (dr)e=E(r)n(e)
e(n) = (dpe=E(u)n(e)
e(v) = (dv)e=¢&(v)n(e)

and similarly, we have

(d€)(x) = 0, (d€)() = 0, (de)(v) = 0.

Moreover, it follows that

og)e) =0,0(pe) =0, A =+/—(k + a?),

%(gbe)()\) =0, c= %e()\) =0.
Consider the three dimensional manifold

M3:{($,y,2)ER3, Z#O}v

0
0,
0

)

where (z,y,z) are the cartesian coordinates in R3. We define three
vector fields on M3 as

0 0
€= %7 ¢€ - @7
—2az 6
&= [ax—y(e —l—z)]—
ox
+ [z(z — €72%%) + ay] g + 9
oy 0z’
Then we set
[e,pe] = 0,
[e,&] = ae+ (2 — e 2%%)pe,
[pe,&] = —(e72%% + 2)e + ade.

Moreover, the matrice form of the metric tensor g, the tensor fields
and h are given by

1 0 —d
g=10 1 —k )
—d —k 1+d*+k

0 —d &k e~ % 0 —de™?*
p=11 0 —d|,h= 0 —e 22 ke % |,
0 0 0 0 0 0

and
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where

d = ar—y(e 2 +2),
ko= a(z—e )+ ay.

Let 1 be the 1-form defined by n = kidx + kody + ksdz for all vector
fields on M3. Since n(X) = g(X, &), we obtain that n(e) = 0, n(¢e) =0
and n(§) = 1. Then we get n = dz for all vector fields. Since dn =
d(dz) = d?z, we have dn = 0. Using Koszul’s formula, we have seen that
d® = 2am A ®. Hence, M? is an almost a-cosymplectic manifold. Thus
we obtain

R(X,Y)é = —(e7 " +a®) [n(Y)X — n(X)Y]+2z [n(Y)hX — n(X)hY],
where k = —(e™4%% + o?) and p = 2z.
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