
Honam Mathematical J. 41 (2019), No. 2, pp. 269–284
https://doi.org/10.5831/HMJ.2019.41.2.269

ON ALMOST ALPHA-COSYMPLECTIC MANIFOLDS

WITH SOME NULLITY DISTRIBUTIONS

Hakan Öztürk

Abstract. The object of the paper is to investigate almost alpha-
cosymplectic (κ, µ, ν) spaces. Some results on almost alpha-
cosymplectic (κ, µ, ν) spaces with certain conditions are obtained.
Finally, we give an example on 3-dimensional case.

1. Introduction

It is well known that there exist contact metric manifolds M2n+1

whose curvature tensor R and the direction of the characteristic vector
field ξ holds R(X,Y )ξ = 0 for any vector fields on M2n+1. Using a D-
homothetic deformation to a contact metric manifold with R(X,Y )ξ =
0, we get a contact metric manifold satisfying the following special con-
dition

(1) R(X,Y )ξ = η(Y )(κI + µh)X − η(X)(κI + µh)Y,

where κ, µ are constants and h is the self-adjoint (1, 1)-type tensor field.
This condition is called (κ, µ)-nullity on M2n+1. Contact metric mani-
folds with (κ, µ)-nullity condition studied for κ, µ =const. in [1], [2]. In
[2], the author introduced contact metric manifold whose characteristic
vector field belongs to the (κ, µ)-nullity condition and proved that non-
Sasakian contact metric manifold was completely determined locally by
its dimension for the constant values of κ and µ.

Koufogiorgos and Tsichlias found a new class of 3-dimensional contact
metric manifolds that κ and µ are non-constant smooth functions. They

Received September 11, 2018. Revised October 19, 2018. Accepted October 19,
2018.

2010 Mathematics Subject Classification. 53C25, 53C35, 53D10.
Key words and phrases. Almost α-cosymplectic manifold, nullity distribution,

(κ, µ, ν)-space.
This paper is supported by Afyon Kocatepe University Scientific Research Coor-

dination Unit with the project number 18.KARİYER.37.
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generalized (κ, µ)-contact metric manifolds on non-Sasakian manifolds
for n > 1, where the functions κ, µ are constants, see [12].

Also, Olszak and Dacko extensively studied almost cosymplectic
(κ, µ, ν) manifolds. These manifolds whose almost cosymplectic struc-
tures (φ, ξ, η, g) holds the condition

(2) R(X,Y )ξ = η(Y )(κI + µh+ νφh)X − η(X)(κI + µh+ νφh)Y,

for κ, µ, ν ∈ Rη(M2n+1), where Rη(M2n+1) be the subring of the ring of
smooth functions f on M2n+1 such that df ∧η = 0, see [11]. Such mani-
folds are called almost cosymplectic (κ, µ, ν)-spaces. The condition (2) is
invariant with respect to the D-homothetic deformations of these struc-
tures. The authors show that the integral submanifolds of the distribu-
tion D of such manifolds are locally flat Keahlerian manifolds and give
a new characterization which is established up to a D-homothetic defor-
mation of the almost cosymplectic manifolds. In [10], a complete local
description of almost cosymplectic (−1, µ, 0)-spaces via ”model spaces”
is given depending on the function µ. When µ is constant, the models
are Lie groups with a left-invariant almost cosymplectic structure.

Furthermore, the curvature properties of almost Kenmotsu manifolds
with special attention to (κ, µ)-nullity condition for κ, µ =const. and ν =
0 are studied by Dileo and Pastore, see [4], [3]. In [4], the authors prove
that an almost Kenmotsu manifolds M2n+1 is locally a warped product
of an almost Kaehler manifold and an open interval. If additionally
M2n+1 is locally symmetric then it is locally isometric to the hyperbolic
space H2n+1 of constant sectional curvature c = −1. We recall that
model spaces for almost cosymplectic case are given in [11], however
illustrative examples are not sufficiently available in the literature for an
almost α-cosymplectic manifold satisfying (2) with non-constant smooth
functions.

Section 2 is devoted to preliminaries on almost α-cosymplectic man-
ifolds. In section 3 the notion of almost α-cosymplectic (κ, µ, ν)-spaces
in terms of a specific curvature condition are studied. Finally, in section
4 we investigate the existence of almost α-cosymplectic (κ, µ, ν)-space
in 3-dimensional case and construct an example on such 3-dimensional
(κ, µ)-space.

2. Preliminaries

An almost contact metric manifold M2n+1 is said to be almost α-
Kenmotsu if dη = 0 and dΦ = 2αη∧Φ, α being a non-zero real constant.
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Geometrical properties and examples of almost α-Kenmotsu manifolds
are studied in [14], [6], [15]. An almost Kenmotsu metric structure
(φ, ξ, η, g) is given by the deformed structure

ηp =
1

α
η, ξp = αξ, φp = φ, gp =

1

α2
g, α 6= 0, α ∈ R,

where α is a non-zero real constant. So we get an almost α-Kenmotsu
structure (φp, ξp, ηp, gp). This deformation is called a homothetic defor-
mation, see [14], [15]. It is important to note that almost α-Kenmotsu
structures are related to some special local conformal deformations of
almost cosymplectic structures, see [6].

If we combine these two classes, we obtain a new notion defined by
dη = 0 and dΦ = 2αη ∧ Φ called almost α-cosymplectic manifold for
any real number α, see [14]. Obviously, a normal almost α-cosymplectic
manifold is an α-cosymplectic manifold. An α-cosymplectic manifold is
either cosymplectic under the condition α = 0 or α-Kenmotsu (α 6= 0)
for α ∈ R.

Let M2n+1 be an almost α-cosymplectic manifold and

D = {X : η(X) = 0} .

Since the 1-form is closed, we have Lξη = 0 and [X, ξ] ∈ D for any
X ∈ D. The Levi-Civita connection satisfies ∇ξξ = 0 and ∇ξφ ∈ D,
which implies that ∇ξX ∈ D for any X ∈ D.

Now, we set A = −∇ξ and h = 1
2Lξφ for any vector fields X on

M2n+1 where α is a smooth function such that dα ∧ η = 0. Obviously,
A(ξ) = 0 and h(ξ) = 0. Moreover, the following relations are held

(3) ∇Xξ = −αφ2X − φhX,

(4) (φ ◦ h)X + (h ◦ φ)X = 0, (φ ◦A)X + (A ◦ φ)X = −2αφ,

(∇Xη)Y = α [g(X,Y )− η(X)η(Y )] + g(φY, hX),(5)

δη = −2αn, tr(h) = 0,(6)

Besides , we have

(7) (∇Xφ)Y + (∇φXφ)φY = −αη(Y )φX + 2αg(φX, Y )ξ − η(Y )hX,

for any vector fields X,Y on M2n+1, see [14].
Let (M2n+1, φ, ξ, η, g) be an almost α-cosymplectic manifold. We de-

note the curvature tensor and Ricci tensor of g by R and S respectively.
We define a self adjoint operator l = R(., ξ)ξ called the Jacobi operator
with respect to ξ. Then we have the curvatures relations
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R(X,Y )ξ = (∇Y φh)X − (∇Xφh)Y − α [η(X)φhY − η(Y )φhX](8)

+
[
α2 + ξ(α)

]
[η(X)Y − η(Y )X] ,

(9) lX =
[
α2 + ξ(α)

]
φ2X + 2αφhX − h2X + φ(∇ξh)X,

(10) lX − φlφX = 2
[
(α2 + ξ(α))φ2X − h2X

]
,

(11) (∇ξh)X = −φlX −
[
α2 + ξ(α)

]
φX − 2αhX − φh2X,

(12) S(X, ξ) = −2n
[
α2 + ξ(α)

]
η(X)− (div(φh))X,

(13) S(ξ, ξ) = −
[
2n(α2 + ξ(α)) + tr(h2)

]
,

(14)
g(RξXY,Z)− g(RξXφY, φZ) + g(RξφXY, φZ) + g(RξφXφY,Z) =
2(∇hXΦ)(Y, Z) + 2(α2 + ξ(α)) [η(Y )g(X,Z)− η(Z)g(X,Y )]
−2αη(Y )g(φhX,Z) + 2αη(Z)g(φhX, Y ),

for any vector fields X,Y, Z on M2n+1 where α is a smooth function
such that dα ∧ η = 0, see [9].

Corollary 2.1. Let (M2n+1, φ, ξ, η, g) be an almost α-cosymplectic
manifold. If the equation ξ(α) = 0 holds then α is a constant function
such that dα ∧ η = 0. It follows that α is parallel along the character-
istic vector field ξ. Thus throughout the paper, we will accept it in this
context.

3. (κ, µ, ν)-Spaces

In this section, we are especially interested in almost α-cosymplectic
manifolds whose almost α-cosymplectic structure (φ, ξ, η, g) satisfies the
condition (2) for κ, µ, ν ∈ Rη(M2n+1). Such manifolds are said to be
almost α-cosymplectic (κ, µ, ν)-spaces.

Proposition 3.1. The following relations are held on almost α-
cosymplectic (κ, µ, ν)-space

(15) l = −κφ2 + µh+ νφh,

(16) lφ− φl = 2µhφ+ 2νh,

(17) h2 = (κ+ α2)φ2, κ ≤ −α2,
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(18) (∇ξh) = −µφh+ (ν − 2α)h,

(19) ∇ξh2 = 2(ν − 2α)(κ+ α2)φ2,

(20) ξ(κ) = 2(ν − 2α)(κ+ α2),

R(ξ,X)Y = κ(g(Y,X)ξ − η(Y )X) + µ(g(hY,X)ξ

−η(Y )hX) + ν(g(φhY,X)ξ − η(Y )φhX),(21)

(22) Qξ = 2nκξ,

(23) (∇Xφ)Y = g(αφX + hX, Y )ξ − η(Y )(αφX + hX),

(∇Xφh)Y − (∇Y φh)X = −(κ+ α2)(η(Y )X − η(X)Y )− µη(Y )hX

+µη(X)hY )+(α−ν)(η(Y )φhX−η(X)φhY ),(24)

(∇Xh)Y − (∇Y h)X = (κ+ α2)(η(Y )φX − η(X)φY

+2g(φX, Y )ξ) + µ(η(Y )φhX − η(X)φhY )(25)

+(α− ν)(η(Y )hX − η(X)hY ),

for all vector fields X,Y on M2n+1.

Proof. From (2) we get

(26) lX = R(X, ξ)ξ = κ(X − η(X)ξ) + µhX + νφhX.

Replacing X by φX in (26), it gives

lφX = κφX + µφhX + νφ2hX.

Thus we have

lφX − φlX = µ(hφX − φhX)− 2νφ2hX,

so it completes the proof of (16). By using (26) we deduce

(27) φlφX = φκφX + φµφhX + φνφ2hX.

Taking into account (26) and (27) we get

lX − φlφX = −2κφ2X.

Again using (26) we have

−2κφ2X = 2α2φ2X − 2h2X,

which gives the proof of (17). Moreover, differentiating (17) along ξ we
get

(∇ξh)X = −κφX − µφhX + νhX − α2φX − 2αhX + (κ+ α2)φX.
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Alternately, using (17), we obtain

∇ξh2 = 2(ν − 2α)h2X.

The proof of (19) is obvious from (18). Then differentiating (19) along
ξ we find

2(ν − 2α)(κ+ α2)φ2X = [ξ(κ)]φ2X.

Since g(R(ξ,X)Y,Z) = g(R(Y,Z)ξ,X), we have

g(R(Y, Z)ξ,X) =κ(η(Z)g(Y,X)− η(Y )g(Z,X)) + µ(η(Z)g(hY,X)

−η(Y )g(hZ,X))+ν(η(Z)g(φhY,X)−η(Y )g(φhZ,X)).

The last equation completes the proof of (21). Contracting (21) with
respect to X,Y and using the definition of Ricci tensor, we obtain

S(ξ, Z) =

2n+1∑
i=1

g(R(ξ, Ei)Ei, Z) = 2nκη(Z),

for any vector field Z. Thus (22) is clear. In addition, (22) implies that

g(RξXY, Z) =κ [g(X,Y )η(Z)− η(Y )g(X,Z)] + µg(hX, Y )η(Z)

− µη(Y )g(hX,Z) + ν [g(φhY,X)η(Z)− η(Y )g(φhX,Z)] .

Summing the left side of (14) with the help of the above equation for
ξ(α) = 0, then we deduce

−2κ [η(Y )g(X,Z)− η(Z)g(X,Y )] .

Thus (14) reduces to

− 2κ [η(Y )g(X,Z)− η(Z)g(X,Y )]

=2(∇hXΦ)(Y,Z) + 2α2η(Y )g(X,Z)− 2α2η(Z)g(X,Y )

− 2αη(Y )g(φhX,Z) + 2αη(Z)g(φhX, Y ) + 2αη(Z)g(φhX, Y ).

Also, we have

−(∇hXΦ)(Y, Z) = (κ+ α2) [η(Y )g(X,Z)− η(Z)g(X,Y )](28)

−α [η(Y )g(φhX,Z)− η(Z)g(φhX, Y )] .

Using (28) then we obtain (23). Then in view of (8), we also have

(29)
(∇Xφh)Y − (∇Y φh)X = −R(X,Y )ξ
(α2 + ξ(α)) [η(X)Y − η(Y )X]− α [η(X)φhY − η(Y )φhX] .

The proof of (24) is obvious from (2) and (25) is an immediate conse-
quence of (29).

Remark 3.2. (23) shows that an almost α-cosymplectic (κ, µ, ν)-
space satisfies the Kaehlerian condition.
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Theorem 3.3. The following differential equation is satisfied on al-
most α-cosymplectic (κ, µ, ν)-space for

(30)

0 = ξ(κ)(η(Y )X − η(X)Y ) + ξ(µ)(η(Y )hX − η(X)hY )
+ξ(ν)(η(Y )φhX − η(X)φhY )−X(κ)φ2Y +X(µ)hY
+X(ν)φhY − Y (µ)hX − Y (ν)φhX + Y (κ)φ2X
+2(κ+ α2)µg(φX, Y )ξ + 2µg(hX, φhY )ξ.

for all vector fields X,Y .

Proof. Differentiating (2) along a vector field Z and using (3) we have

(∇ZR)(X,Y )ξ =Z(κ) [η(Y )X − η(X)Y ] + Z(µ) [η(Y )hX − η(X)hY ]

+ Z(ν) [η(Y )φhX − η(X)φhY ] + κ [αg(Z,X)Y ]

+ κ [−αg(X,Z)Y + g(X,φhZ)Y − g(Y, φhZ)X]

+ µ [−g(Y, φhZ)hX + η(Y )(∇Zh)X + αg(Y, Z)hX]

+ µ [−αg(X,Z)hY + g(X,φhZ)hY − η(X)(∇Zh)Y ]

+ ν [αg(Y,Z)φhX − g(Y, φhZ)φhX + η(Y )(∇Zφh)X]

+ ν [−αg(X,Z)φhY + g(X,φhZ)φhY −η(X)(∇Zφh)Y ]

− αR(X,Y )Z +R(X,Y )φhZ.

Next, using the last equation and the second Bianchi identity, we obtain

0 =Z(κ) [η(Y )X − η(X)Y ] + Z(µ) [η(Y )hX − η(X)hY ]

+ Z(ν) [η(Y )φhX − η(X)φhY ] +X(κ) [η(Z)Y − η(Y )Z]

+X(µ) [η(Z)hY − η(Y )hZ] +X(ν) [η(Z)φhY − η(Y )φhZ]

+ Y (κ) [η(X)Z − η(Z)X] + Y (µ) [η(X)hZ − η(Z)hX]

+ Y (ν) [η(X)φhZ − η(Z)φhX] + µ [η(Y ) ((∇Zh)X − (∇Xh)Z)]

+ µ [η(Z) ((∇Xh)Y − (∇Y h)X) + η(X) ((∇Y h)Z − (∇Zh)Y )]

+ ν [η(Y ) ((∇Zφh)X − (∇Xφh)Z) + η(Z) ((∇Xφh)Y − (∇Y φh)X)]

+ ν [η(X) ((∇Y φh)Z − (∇Zφh)Y )] +R(X,Y )φhZ +R(Y,Z)φhX

− α [R(X,Y )Z +R(Y, Z)X +R(Z,X)Y ] +R(Z,X)φhY
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for all vector fields X,Y, Z. Putting ξ instead of Z in the above equation,
we obtain

0 = ξ(κ) [η(Y )X − η(X)Y ] + ξ(µ) [η(Y )hX − η(X)hY ]

+ξ(ν) [η(Y )φhX − η(X)φhY ]−X(κ)φ2Y +X(µ)hY

+X(ν)φhY + Y (κ)φ2X − Y (µ)hX − Y (ν)φhX

+µη(Y )
[
−(κ+ α2)φX − µφhX − (α− ν)hX

]
+µ(κ+ α2) [η(Y )φX − η(X)φY + 2g(φX, Y )ξ]

+µ2 [η(Y )φhX − η(X)φhY ] + µ(α− ν) [η(Y )hX − η(X)hY ]

+µη(X)
[
(κ+ α2)φY + µhφY + (α− ν)hY

]
+νη(Y )

[
−(κ+ α2)φ2X + µhX − (α− ν)φhX

]
−ν(κ+ α2) [η(Y )X − η(X)Y ]− νµ [η(Y )hX − η(X)hY ]

+ν(α− ν) [η(Y )φhX − η(X)φhY ] + νη(X)(κ+ α2)φ2Y

+νη(X) [−µhY + (α− ν)φhY ]−R(ξ, Y )φhX +R(ξ,X)φhY.

Finally, substituting (21), (24) and (25) in the last equation, we deduce
(30).

Lemma 3.4. Let (M2n+1, φ, ξ, η, g) be an almost α-cosymplectic
(κ, µ, ν)-space. For every p ∈ N, there exists neighborhood W of p and
orthonormal local vector fields Xi, φXi and ξ for i = 1, . . . , n, defined
on W , such that

(31) hXi = λXi, hφXi = −λXi, hξ = 0,

for i = 1, . . . , n, where λ =
√
− (κ+ α2).

Proof. According to Koufogiorgos ([13], Lemma 4.2), the proof can
be easily carried out for almost α-cosymplectic (κ, µ, ν)-space.

Theorem 3.5. Let (M2n+1, φ, ξ, η, g) be an almost α-cosymplectic
(κ, µ, ν)-space for n > 1. Then the functions κ, µ and ν are non-constant
functions on M2n+1 such that df ∧ η = 0.

Proof. By means of Lemma 1, the existence of a local orthonormal
basis {Xi, φXi, ξ} such that

hei = λei, hφei = −λφei, hξ = 0, λ =
√
− (κ+ α2),

on W . Substituting X = ei and Y = φei in (30), we obtain

[ei(κ)− λei(µ)− λφei(ν)]φei + [λei(ν)− λφei(µ)− φei(κ)] = 0.
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Since {ei, eXi} is linearly independent, we have

(32)
ei(κ)− λei(µ)− λφei(ν) = 0,
λei(ν)− λφei(µ)− φei(κ) = 0.

In addition, replacing X and Y by ei and ej , respectively, for i 6= j, (30)
provides that

(33)
ei(κ) + λei(µ) = 0,

ei(ν) = 0.

Besides, substituting X = φei and Y = φej in (30) for i 6= j, we get

(34) φei(κ)− λφei(µ) = 0, φei(ν) = 0

In view of (32), (34) and (33) we deduce

ei(κ) = ei(µ) = ei(ν) = φei(κ) = φei(µ) = φei(ν) = 0.

For an arbitrary function κ, we obtain dκ = ξ(κ)η in the last equation
system. In this way, we have

(35) 0 = d2κ = d(dκ) = dξ(κ) ∧ η + ξ(κ)dη.

Since dη = 0, it follows that dξ(κ)∧ η = 0. Thus the proof is completed.

Corollary 3.6. The functions κ, µ and ν are constants iff these func-
tions are constants along the characteristic vector field ξ for almost α-
cosymplectic (κ, µ, ν)-space with n > 1.

4. On Three Dimensional Case

In this section, we investigate the existence of almost α-cosymplectic
(κ, µ, ν)-space in 3-dimensional case.

Let U be the open subset ofM3 where the tensor field h 6= 0 and let U ′

be the open subset of points p ∈M3 such that h = 0 in a neighborhood
of p. Thus the association set of U ∪ U ′ is an open and dense subset
of M3. For every p ∈ U there exists an open neighborhood of p such
that he = λe and hφe = −λφe, where λ is a positive non-vanishing
smooth function. So every properties satisfying on U ∪ U ′ is valid on
M3. Therefore, there exists a local orthonormal basis {e, φe, ξ} of smooth
eigenfunctions of h in a neighborhood of p for every point p ∈ U ∪ U ′.
This basis is called φ-basis. So we state the following Lemma.
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Lemma 4.1. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic mani-
fold. Then we have the following relations for the covariant derivatives
on U

∇ξe = −aφe, ∇ξφe = ae,
∇eξ = αe− λφe, ∇φeξ = −λe+ αφe,
∇ee = bφe− αξ, ∇φeφe = ce− αξ,
∇eφe = −be+ λξ, ∇φee = −cφe+ λξ,

where a is a smooth function, b = g(∇ee, φe) and c = g(∇φeφe, e) defined
by

b =
1

2λ
[(φe)(λ) + σ(e)] , σ(e) = S(ξ, e) = g(Qξ, e),

and

c =
1

2λ
[e(λ) + σ(φe)] , σ(φe) = S(ξ, φe) = g(Qξ, φe),

respectively.

Proof. Replacing X by e and φe in (3), we get

∇eξ = αe− λφe, ∇φeξ = αφe− λe,
for any vector field X. Furthermore, we have

∇ξe = −g(e,∇ξφe)φe
where a is defined by a = g(e,∇ξφe). Following this procedure, the
other covariant derivative equalities can easily find. We recall that the
curvature tensor R is given by

(36)
R(X,Y )Z = −S(X,Z)Y + S(Y, Z)X − g(X,Z)QY
+g(Y,Z)QX + r

2 [g(X,Z)Y − g(Y,Z)X],

in dimension 3 for any vector fields X,Y, Z. Putting X = e, Y = φe and
Z = ξ in the last equation, we obtain

R(e, φe)ξ = −g(Qe, ξ)φe+ g(Qφe, ξ)e.

Since σ(X) = g(Qξ,X), we have

(37) R(e, φe)ξ = −σ(e)φe+ σ(φe)e,

for any vector field X. By using the curvature properties of the Rie-
mannian tensor, we also have

(38) R(e, φe)ξ = (2λc− e(λ))e+ (−2λb+ (φe)(λ))φe.

Thus combining (38) and (37), we deduce

(39) σ(e) = 2λb− (φe)(λ), σ(φe) = 2λc− e(λ).

Hence, the functions b and c are obvious from (39).
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Proposition 4.2. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic
manifold. On U, we have

(40) ∇ξh = 2ahφ+ ξ(λ)s,

where s is the tensor field of type (1, 1) defined by sξ = 0, se = e and
sφe = −φe.

Proof. First, differentiating of the tensor field h along ξ we have

(∇ξh)e = −2λaφe+ ξ(λ)e, (∇ξh)φe = −2λae− ξ(λ)φe.

In addition, we also have (∇ξh)ξ = 0. With the help of the last equation,
we obtain (40). It is notice that tr(s) = 0.

Proposition 4.3. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic
manifold. Then we have

(41) h2 − α2φ2 = tr(l)
2 φ2.

Proof. Using (13), we get tr(l) = −2
[
α2 + λ2

]
for all vector fields on

M3. Besides, we have

h2e− α2φ2e = tr(l)
2 φ2e, h2φe− α2φ3e = tr(l)

2 φ2φe.

It follows that h2ξ − α2φ2ξ = tr(l)
2 φ2ξ = 0. Thus it completes the

proof.

Lemma 4.4. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic mani-
fold. Then the Ricci operator Q satisfies the following relation

Q = ãI + b̃η ⊗ ξ + 2αφh+ φ(∇ξh)− σ(φ2)⊗ ξ(42)

+σ(e)η ⊗ e+ σ(φe)η ⊗ φe,

where the smooth functions ã and b̃ are defined by ã = 1
2r+α2 +λ2 and

b̃ = −1
2r − 3α2 − 3λ2 respectively.

Proof. For 3-dimensional case, we deduce

lX = tr(l)X − S(X, ξ)ξ +QX − η(X)Qξ − r
2 (X − η(X)ξ) ,

for any vector field X. It follows that

QX = α2φ2X + 2αφhX − h2X + φ(∇ξh)X − tr(l)X
−S(X, ξ)ξ + η(X)Qξ + r

2 (X − η(X)ξ) .

Moreover, since S(X, ξ) = −S(φ2X, ξ) + η(X)tr(l), we have

(43)
QX = − tr(l)

2 φ2X + 2αφhX + φ(∇ξh)X − tr(l)X
−S(φ2X, ξ)ξ + η(X)tr(l)ξ + η(X)Qξ − r

2φ
2X,
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and

(44) Qξ = σ(e)e+ σ(φe)φe+ tr(l)ξ.

Next, using (43) and (44) we obtain

QX =
[
1
2r + α2 + λ2

]
X +

[
−1

2r − 3α2 − 3λ2
]
η(X)ξ

+2αφhX + φ(∇ξh)X − S(φ2X, ξ)ξ + η(X)σ(e)e+ η(X)σ(φe)φe.

Thus (42) is obvious for any vector field X.

Theorem 4.5. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic man-
ifold. If σ ≡ 0, then the (κ, µ, ν)-structure exists on every open and dense
subset of M3.

Proof. Substituting σ ≡ 0 and s = 1
λh in (42) we have

(45) Q = ãI + b̃η ⊗ ξ + 2ah+ (2α+
ξ(λ)

λ
)φh,

which yields

(46) Qξ = tr(l)ξ,

for any vector fields on M3. Since C ≡ 0, taking ξ instead of Z in (36)
we obtain

(47)
R(X,Y )ξ = −S(X, ξ)Y + S(Y, ξ)X + η(Y )QX
−η(X)QY − r

2 [η(Y )X − η(X)Y ],

and replacing X by ξ , then we get Qξ = tr(l). Hence, it follows that

(48) S(Y, ξ) = tr(l)η(Y ),

for any vector field Y. Thus by virtue of (45), (46) and (48), we have

R(X,Y )ξ = −
(
α2 + λ2

)
(η(Y )X − η(X)Y )

+2a(η(Y )hX − η(X)hY ) + (2α+ ξ(λ)
λ )(η(Y )φhX − η(X)φhY ).

Therefore, we obtain κ, µ and ν defined κ = tr(l)
2 , µ = 2a and ν =

2α+ ξ(λ)
λ , respectively.

Theorem 4.6. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic man-
ifold. If the following relation is held

(49) Qφ− φQ = f1hφ+ f2h,

then the manifold is an almost α-cosymplectic (κ, µ, ν)-space, where the
functions f1, f2 ∈ C∞.
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Proof. By the hypothesis, we have

(50)
α2φ2X + 2αφhX − h2X + φ(∇ξh)X
= QX − 2tr(l)η(X)ξ + tr(l)X − r

2 (X − η(X)ξ) .

Applying φ both two sides of (50), we get

(51) −α2φX − φh2X − 2αhX − (∇ξh)X = φQX + tr(l)φX − r
2φX.

Also, replacing X by φX in (51), we find

(52)
−α2φX + 2αhX − h2φX + (∇ξh)X
= QφX + tr(l)φX − r

2φX.

Then combining (51) and (52) we deduce

QφX + φQX = −2
[
α2φ+ φh2

]
X − 2tr(l)φX + rφX.

Next, substituting (41) in the last equation and using (49), we obtain

QφX + φQX = −tr(l)φX + rφX.

By virtue of (49), (51) and (52) we also obtain

(53) (∇ξh)X = 1
2f1hφX + 1

2(f2 − 4α)hX.

Using (53) in (42), we have

(54) QX = ãX + b̃η(X)ξ + 2αφhX + 1
2f1hX + 1

2(f2 − 4α)φhX,

for σ ≡ 0. Finally, substituting (54) in (47), we deduce

(55)
R(X,Y )ξ = (tr(l) + ã− r

2) [η(Y )X − η(X)Y ]
+1

2f1 [η(Y )hX − η(X)hY ] + 1
2f2 [η(Y )φhX − η(X)φhY ] .

Follows from (55), there exists a (κ, µ, ν)-space where ã = 1
2r + α2 +

λ2.

Example 4.7. Let (M3, φ, ξ, η, g) be an almost α-cosymplectic man-
ifold. Then there exists a (κ, µ, ν)-structure such that

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + 2a(η(Y )hX − η(X)hY )

+(2α+ ξ(λ)
λ )(η(Y )φhX − η(X)φhY ),

where the functions κ, µ, ν ∈ R3
η(M) defined by

dκ = ξ(κ)η, dµ = ξ(µ)η, dν = ξ(ν)η.
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Now, let us consider φ-basis on M3 such that he = λe, hφe = −λφe and
hξ = 0. With respect to φ-basis, we have

e(κ) = (dκ)e = ξ(κ)η(e) = 0,

e(µ) = (dµ)e = ξ(µ)η(e) = 0,

e(ν) = (dν)e = ξ(ν)η(e) = 0,

and similarly, we have

(φe)(κ) = 0, (φe)(µ) = 0, (φe)(ν) = 0.

Moreover, it follows that

σ(e) = 0, σ(φe) = 0, λ =
√
−(κ+ α2),

b = 1
2λ(φe)(λ) = 0, c = 1

2λe(λ) = 0.

Consider the three dimensional manifold

M3 =
{

(x, y, z) ∈ R3, z 6= 0
}
,

where (x, y, z) are the cartesian coordinates in R3. We define three
vector fields on M3 as

e =
∂

∂x
, φe =

∂

∂y
,

ξ =
[
αx− y(e−2αz + z)

] ∂
∂x

+
[
x(z − e−2αz) + αy

] ∂
∂y

+
∂

∂z
,

Then we set
[e, φe] = 0,
[e, ξ] = αe+ (z − e−2αz)φe,
[φe, ξ] = −(e−2αz + z)e+ αφe.

Moreover, the matrice form of the metric tensor g, the tensor fields ϕ
and h are given by

g =

 1 0 −d
0 1 −k
−d −k 1 + d2 + k2

 ,

and

φ =

 0 −d k
1 0 −d
0 0 0

 , h =

 e−2z 0 −de−2z
0 −e−2z ke−2z

0 0 0

 ,
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where

d = αx− y(e−2αz + z),

k = x(z − e−2αz) + αy.

Let η be the 1-form defined by η = k1dx + k2dy + k3dz for all vector
fields on M3. Since η(X) = g(X, ξ), we obtain that η(e) = 0, η(φe) = 0
and η(ξ) = 1. Then we get η = dz for all vector fields. Since dη =
d(dz) = d2z, we have dη = 0. Using Koszul’s formula, we have seen that
dΦ = 2αη ∧ Φ. Hence, M3 is an almost α-cosymplectic manifold. Thus
we obtain

R(X,Y )ξ = −(e−4αz +α2) [η(Y )X − η(X)Y ] + 2z [η(Y )hX − η(X)hY ] ,

where κ = −(e−4αz + α2) and µ = 2z.
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