Honam Mathematical J. **41** (2019), No. 2, pp. 269–284 https://doi.org/10.5831/HMJ.2019.41.2.269

ON ALMOST ALPHA-COSYMPLECTIC MANIFOLDS WITH SOME NULLITY DISTRIBUTIONS

HAKAN ÖZTÜRK

Abstract. The object of the paper is to investigate almost alphacosymplectic (κ, μ, ν) spaces. Some results on almost alphacosymplectic (κ, μ, ν) spaces with certain conditions are obtained. Finally, we give an example on 3-dimensional case.

1. Introduction

It is well known that there exist contact metric manifolds M^{2n+1} whose curvature tensor R and the direction of the characteristic vector field ξ holds $R(X,Y)\xi = 0$ for any vector fields on M^{2n+1} . Using a Dhomothetic deformation to a contact metric manifold with $R(X,Y)\xi =$ 0, we get a contact metric manifold satisfying the following special condition

(1)
$$R(X,Y)\xi = \eta(Y)(\kappa I + \mu h)X - \eta(X)(\kappa I + \mu h)Y,$$

where κ, μ are constants and h is the self-adjoint (1, 1)-type tensor field. This condition is called (κ, μ) -nullity on M^{2n+1} . Contact metric manifolds with (κ, μ) -nullity condition studied for $\kappa, \mu = \text{const. in [1], [2]}$. In [2], the author introduced contact metric manifold whose characteristic vector field belongs to the (κ, μ) -nullity condition and proved that non-Sasakian contact metric manifold was completely determined locally by its dimension for the constant values of κ and μ .

Koufogiorgos and Tsichlias found a new class of 3-dimensional contact metric manifolds that κ and μ are non-constant smooth functions. They

Received September 11, 2018. Revised October 19, 2018. Accepted October 19, 2018.

²⁰¹⁰ Mathematics Subject Classification. 53C25, 53C35, 53D10.

Key words and phrases. Almost $\alpha\text{-}\mathrm{cosymplectic}$ manifold, nullity distribution, $(\kappa,\mu,\nu)\text{-}\mathrm{space}.$

This paper is supported by Afyon Kocatepe University Scientific Research Coordination Unit with the project number 18.KARİYER.37.

generalized (κ, μ) -contact metric manifolds on non-Sasakian manifolds for n > 1, where the functions κ, μ are constants, see [12].

Also, Olszak and Dacko extensively studied almost cosymplectic (κ, μ, ν) manifolds. These manifolds whose almost cosymplectic structures (ϕ, ξ, η, g) holds the condition

(2)
$$R(X,Y)\xi = \eta(Y)(\kappa I + \mu h + \nu \phi h)X - \eta(X)(\kappa I + \mu h + \nu \phi h)Y,$$

for $\kappa, \mu, \nu \in \mathcal{R}_{\eta}(M^{2n+1})$, where $\mathcal{R}_{\eta}(M^{2n+1})$ be the subring of the ring of smooth functions f on M^{2n+1} such that $df \wedge \eta = 0$, see [11]. Such manifolds are called almost cosymplectic (κ, μ, ν) -spaces. The condition (2) is invariant with respect to the D-homothetic deformations of these structures. The authors show that the integral submanifolds of the distribution \mathcal{D} of such manifolds are locally flat Keahlerian manifolds and give a new characterization which is established up to a D-homothetic deformation of the almost cosymplectic manifolds. In [10], a complete local description of almost cosymplectic $(-1, \mu, 0)$ -spaces via "model spaces" is given depending on the function μ . When μ is constant, the models are Lie groups with a left-invariant almost cosymplectic structure.

Furthermore, the curvature properties of almost Kenmotsu manifolds with special attention to (κ, μ) -nullity condition for $\kappa, \mu = \text{const.}$ and $\nu =$ 0 are studied by Dileo and Pastore, see [4], [3]. In [4], the authors prove that an almost Kenmotsu manifolds M^{2n+1} is locally a warped product of an almost Kaehler manifold and an open interval. If additionally M^{2n+1} is locally symmetric then it is locally isometric to the hyperbolic space H^{2n+1} of constant sectional curvature c = -1. We recall that model spaces for almost cosymplectic case are given in [11], however illustrative examples are not sufficiently available in the literature for an almost α -cosymplectic manifold satisfying (2) with non-constant smooth functions.

Section 2 is devoted to preliminaries on almost α -cosymplectic manifolds. In section 3 the notion of almost α -cosymplectic (κ, μ, ν)-spaces in terms of a specific curvature condition are studied. Finally, in section 4 we investigate the existence of almost α -cosymplectic (κ, μ, ν)-space in 3-dimensional case and construct an example on such 3-dimensional (κ, μ)-space.

2. Preliminaries

An almost contact metric manifold M^{2n+1} is said to be almost α -Kenmotsu if $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$, α being a non-zero real constant.

Geometrical properties and examples of almost α -Kenmotsu manifolds are studied in [14], [6], [15]. An almost Kenmotsu metric structure (ϕ, ξ, η, g) is given by the deformed structure

$$\eta^{\scriptscriptstyle |}=\frac{1}{\alpha}\eta,\ \xi^{\scriptscriptstyle |}=\alpha\xi,\ \phi^{\scriptscriptstyle |}=\phi,\ g^{\scriptscriptstyle |}=\frac{1}{\alpha^2}g,\ \alpha\neq 0,\ \alpha\in\mathbb{R},$$

where α is a non-zero real constant. So we get an almost α -Kenmotsu structure ($\phi^{\dagger}, \xi^{\dagger}, \eta^{\dagger}, g^{\dagger}$). This deformation is called a homothetic deformation, see [14], [15]. It is important to note that almost α -Kenmotsu structures are related to some special local conformal deformations of almost cosymplectic structures, see [6].

If we combine these two classes, we obtain a new notion defined by $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$ called almost α -cosymplectic manifold for any real number α , see [14]. Obviously, a normal almost α -cosymplectic manifold is an α -cosymplectic manifold. An α -cosymplectic manifold is either cosymplectic under the condition $\alpha = 0$ or α -Kenmotsu ($\alpha \neq 0$) for $\alpha \in \mathbb{R}$.

Let M^{2n+1} be an almost α -cosymplectic manifold and

$$\mathcal{D} = \{X : \eta(X) = 0\}$$

Since the 1-form is closed, we have $\mathcal{L}_{\xi}\eta = 0$ and $[X,\xi] \in \mathcal{D}$ for any $X \in \mathcal{D}$. The Levi-Civita connection satisfies $\nabla_{\xi}\xi = 0$ and $\nabla_{\xi}\phi \in \mathcal{D}$, which implies that $\nabla_{\xi}X \in \mathcal{D}$ for any $X \in \mathcal{D}$.

Now, we set $A = -\nabla \xi$ and $h = \frac{1}{2}\mathcal{L}_{\xi}\phi$ for any vector fields X on M^{2n+1} where α is a smooth function such that $d\alpha \wedge \eta = 0$. Obviously, $A(\xi) = 0$ and $h(\xi) = 0$. Moreover, the following relations are held

(3)
$$\nabla_X \xi = -\alpha \phi^2 X - \phi h X,$$

(4)
$$(\phi \circ h)X + (h \circ \phi)X = 0, \quad (\phi \circ A)X + (A \circ \phi)X = -2\alpha\phi,$$

(5)
$$(\nabla_X \eta)Y = \alpha \left[g(X,Y) - \eta(X)\eta(Y)\right] + g(\phi Y,hX),$$

(6)
$$\delta \eta = -2\alpha n, \quad tr(h) = 0,$$

Besides , we have

(7)
$$(\nabla_X \phi)Y + (\nabla_{\phi X} \phi)\phi Y = -\alpha \eta(Y)\phi X + 2\alpha g(\phi X, Y)\xi - \eta(Y)hX,$$

for any vector fields X, Y on M^{2n+1} , see [14].

Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. We denote the curvature tensor and Ricci tensor of g by R and S respectively. We define a self adjoint operator $l = R(.,\xi)\xi$ called the Jacobi operator with respect to ξ . Then we have the curvatures relations

$$(8)R(X,Y)\xi = (\nabla_Y \phi h)X - (\nabla_X \phi h)Y - \alpha [\eta(X)\phi hY - \eta(Y)\phi hX] + [\alpha^2 + \xi(\alpha)] [\eta(X)Y - \eta(Y)X],$$

(9)
$$lX = \left[\alpha^2 + \xi(\alpha)\right]\phi^2 X + 2\alpha\phi hX - h^2 X + \phi(\nabla_{\xi}h)X,$$

(10)
$$lX - \phi l\phi X = 2\left[(\alpha^2 + \xi(\alpha))\phi^2 X - h^2 X\right],$$

(11)
$$(\nabla_{\xi}h)X = -\phi lX - \left[\alpha^2 + \xi(\alpha)\right]\phi X - 2\alpha hX - \phi h^2 X,$$

(12)
$$S(X,\xi) = -2n \left[\alpha^2 + \xi(\alpha)\right] \eta(X) - (\operatorname{div}(\phi h))X,$$

(13)
$$S(\xi,\xi) = -\left[2n(\alpha^2 + \xi(\alpha)) + tr(h^2)\right],$$

(14)

$$\begin{split} g(R_{\xi X}Y,Z) &- g(R_{\xi X}\phi Y,\phi Z) + g(R_{\xi\phi X}Y,\phi Z) + g(R_{\xi\phi X}\phi Y,Z) = \\ 2(\nabla_{hX}\Phi)(Y,Z) &+ 2(\alpha^2 + \xi(\alpha)) \left[\eta(Y)g(X,Z) - \eta(Z)g(X,Y)\right] \\ &- 2\alpha\eta(Y)g(\phi hX,Z) + 2\alpha\eta(Z)g(\phi hX,Y), \end{split}$$

for any vector fields X, Y, Z on M^{2n+1} where α is a smooth function such that $d\alpha \wedge \eta = 0$, see [9].

Corollary 2.1. Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. If the equation $\xi(\alpha) = 0$ holds then α is a constant function such that $d\alpha \wedge \eta = 0$. It follows that α is parallel along the characteristic vector field ξ . Thus throughout the paper, we will accept it in this context.

3. (κ, μ, ν) -Spaces

In this section, we are especially interested in almost α -cosymplectic manifolds whose almost α -cosymplectic structure (ϕ, ξ, η, g) satisfies the condition (2) for $\kappa, \mu, \nu \in \mathcal{R}_{\eta}(M^{2n+1})$. Such manifolds are said to be almost α -cosymplectic (κ, μ, ν) -spaces.

Proposition 3.1. The following relations are held on almost α -cosymplectic (κ, μ, ν)-space

- (15) $l = -\kappa \phi^2 + \mu h + \nu \phi h,$
- (16) $l\phi \phi l = 2\mu h\phi + 2\nu h,$
- (17) $h^2 = (\kappa + \alpha^2)\phi^2, \ \kappa \le -\alpha^2,$

(18)
$$(\nabla_{\xi}h) = -\mu\phi h + (\nu - 2\alpha)h,$$

(19)
$$\nabla_{\xi} h^2 = 2(\nu - 2\alpha)(\kappa + \alpha^2)\phi^2,$$

(20)
$$\xi(\kappa) = 2(\nu - 2\alpha)(\kappa + \alpha^2),$$

(21)

$$R(\xi, X)Y = \kappa(g(Y, X)\xi - \eta(Y)X) + \mu(g(hY, X)\xi)$$

$$-\eta(Y)hX) + \nu(g(\phi hY, X)\xi - \eta(Y)\phi hX),$$

(22)
$$Q\xi = 2n\kappa\xi,$$

(23)
$$(\nabla_X \phi)Y = g(\alpha \phi X + hX, Y)\xi - \eta(Y)(\alpha \phi X + hX),$$

$$(\nabla_X \phi h)Y - (\nabla_Y \phi h)X = -(\kappa + \alpha^2)(\eta(Y)X - \eta(X)Y) - \mu\eta(Y)hX$$

(24)
$$+\mu\eta(X)hY) + (\alpha - \nu)(\eta(Y)\phi hX - \eta(X)\phi hY),$$

$$(\nabla_X h)Y - (\nabla_Y h)X = (\kappa + \alpha^2)(\eta(Y)\phi X - \eta(X)\phi Y +2g(\phi X, Y)\xi) + \mu(\eta(Y)\phi hX - \eta(X)\phi hY) +(\alpha - \nu)(\eta(Y)hX - \eta(X)hY),$$

for all vector fields X, Y on M^{2n+1} .

Proof. From (2) we get

(26) $lX = R(X,\xi)\xi = \kappa(X - \eta(X)\xi) + \mu hX + \nu \phi hX.$ Replacing X by ϕX in (26), it gives

 $l\phi X = \kappa \phi X + \mu \phi h X + \nu \phi^2 h X.$

Thus we have

$$l\phi X - \phi l X = \mu (h\phi X - \phi h X) - 2\nu \phi^2 h X,$$

so it completes the proof of (16). By using (26) we deduce

(27)
$$\phi l\phi X = \phi \kappa \phi X + \phi \mu \phi h X + \phi \nu \phi^2 h X.$$

Taking into account (26) and (27) we get

$$lX - \phi l\phi X = -2\kappa \phi^2 X.$$

Again using (26) we have

$$-2\kappa\phi^2 X = 2\alpha^2\phi^2 X - 2h^2 X,$$

which gives the proof of (17). Moreover, differentiating (17) along ξ we get

$$(\nabla_{\xi}h)X = -\kappa\phi X - \mu\phi hX + \nu hX - \alpha^2\phi X - 2\alpha hX + (\kappa + \alpha^2)\phi X.$$

Alternately, using (17), we obtain

 $\nabla_{\xi} h^2 = 2(\nu - 2\alpha)h^2 X.$

The proof of (19) is obvious from (18). Then differentiating (19) along ξ we find

$$2(\nu - 2\alpha)(\kappa + \alpha^2)\phi^2 X = [\xi(\kappa)]\phi^2 X.$$

Since $g(R(\xi, X)Y, Z) = g(R(Y, Z)\xi, X)$, we have
 $g(R(Y, Z)\xi, X) = \kappa(\eta(Z)g(Y, X) - \eta(Y)g(Z, X)) + \mu(\eta(Z)g(hY, X)) - \eta(Y)g(hZ, X)) + \nu(\eta(Z)g(\phi hY, X) - \eta(Y)g(\phi hZ, X)).$

The last equation completes the proof of (21). Contracting (21) with respect to X, Y and using the definition of Ricci tensor, we obtain

$$S(\xi, Z) = \sum_{i=1}^{2n+1} g(R(\xi, E_i)E_i, Z) = 2n\kappa\eta(Z),$$

for any vector field Z. Thus (22) is clear. In addition, (22) implies that $g(R_{\xi X}Y,Z) = \kappa \left[g(X,Y)\eta(Z) - \eta(Y)g(X,Z)\right] + \mu g(hX,Y)\eta(Z) - \mu \eta(Y)g(hX,Z) + \nu \left[g(\phi hY,X)\eta(Z) - \eta(Y)g(\phi hX,Z)\right].$

Summing the left side of (14) with the help of the above equation for $\xi(\alpha) = 0$, then we deduce

$$-2\kappa \left[\eta(Y)g(X,Z) - \eta(Z)g(X,Y)\right].$$

Thus (14) reduces to

$$-2\kappa \left[\eta(Y)g(X,Z) - \eta(Z)g(X,Y)\right]$$

=2(\nabla_{hX}\Phi)(Y,Z) + 2\alpha^2 \eta(Y)g(X,Z) - 2\alpha^2 \eta(Z)g(X,Y)
- 2\alpha \eta(Y)g(\alpha hX,Z) + 2\alpha \eta(Z)g(\alpha hX,Y) + 2\alpha \eta(Z)g(\alpha hX,Y).

Also, we have

$$(28) - (\nabla_{hX}\Phi)(Y,Z) = (\kappa + \alpha^2) [\eta(Y)g(X,Z) - \eta(Z)g(X,Y)] -\alpha [\eta(Y)g(\phi hX,Z) - \eta(Z)g(\phi hX,Y)].$$

Using (28) then we obtain (23). Then in view of (8), we also have

(29)
$$(\nabla_X \phi h)Y - (\nabla_Y \phi h)X = -R(X,Y)\xi (\alpha^2 + \xi(\alpha)) [\eta(X)Y - \eta(Y)X] - \alpha [\eta(X)\phi hY - \eta(Y)\phi hX].$$

The proof of (24) is obvious from (2) and (25) is an immediate consequence of (29). $\hfill \Box$

Remark 3.2. (23) shows that an almost α -cosymplectic (κ, μ, ν)-space satisfies the Kaehlerian condition.

Theorem 3.3. The following differential equation is satisfied on almost α -cosymplectic (κ, μ, ν)-space for

(30)
$$\begin{array}{l} 0 = \xi(\kappa)(\eta(Y)X - \eta(X)Y) + \xi(\mu)(\eta(Y)hX - \eta(X)hY) \\ +\xi(\nu)(\eta(Y)\phi hX - \eta(X)\phi hY) - X(\kappa)\phi^2Y + X(\mu)hY \\ +X(\nu)\phi hY - Y(\mu)hX - Y(\nu)\phi hX + Y(\kappa)\phi^2X \\ +2(\kappa + \alpha^2)\mu g(\phi X, Y)\xi + 2\mu g(hX, \phi hY)\xi. \end{array}$$

for all vector fields X, Y.

Proof. Differentiating (2) along a vector field Z and using (3) we have

$$\begin{split} (\nabla_Z R)(X,Y)\xi =& Z(\kappa) \left[\eta(Y)X - \eta(X)Y\right] + Z(\mu) \left[\eta(Y)hX - \eta(X)hY\right] \\ &+ Z(\nu) \left[\eta(Y)\phi hX - \eta(X)\phi hY\right] + \kappa \left[\alpha g(Z,X)Y\right] \\ &+ \kappa \left[-\alpha g(X,Z)Y + g(X,\phi hZ)Y - g(Y,\phi hZ)X\right] \\ &+ \mu \left[-g(Y,\phi hZ)hX + \eta(Y)(\nabla_Z h)X + \alpha g(Y,Z)hX\right] \\ &+ \mu \left[-\alpha g(X,Z)hY + g(X,\phi hZ)hY - \eta(X)(\nabla_Z h)Y\right] \\ &+ \nu \left[\alpha g(Y,Z)\phi hX - g(Y,\phi hZ)\phi hX + \eta(Y)(\nabla_Z \phi h)X\right] \\ &+ \nu \left[-\alpha g(X,Z)\phi hY + g(X,\phi hZ)\phi hY - \eta(X)(\nabla_Z \phi h)Y\right] \\ &- \alpha R(X,Y)Z + R(X,Y)\phi hZ. \end{split}$$

Next, using the last equation and the second Bianchi identity, we obtain

$$\begin{split} 0 =& Z(\kappa) \left[\eta(Y)X - \eta(X)Y \right] + Z(\mu) \left[\eta(Y)hX - \eta(X)hY \right] \\ &+ Z(\nu) \left[\eta(Y)\phi hX - \eta(X)\phi hY \right] + X(\kappa) \left[\eta(Z)Y - \eta(Y)Z \right] \\ &+ X(\mu) \left[\eta(Z)hY - \eta(Y)hZ \right] + X(\nu) \left[\eta(Z)\phi hY - \eta(Y)\phi hZ \right] \\ &+ Y(\kappa) \left[\eta(X)Z - \eta(Z)X \right] + Y(\mu) \left[\eta(X)hZ - \eta(Z)hX \right] \\ &+ Y(\nu) \left[\eta(X)\phi hZ - \eta(Z)\phi hX \right] + \mu \left[\eta(Y) \left((\nabla_Z h)X - (\nabla_X h)Z \right) \right] \\ &+ \mu \left[\eta(Z) \left((\nabla_X h)Y - (\nabla_Y h)X \right) + \eta(X) \left((\nabla_Y h)Z - (\nabla_Z h)Y \right) \right] \\ &+ \nu \left[\eta(Y) \left((\nabla_Z \phi h)X - (\nabla_X \phi h)Z \right) + \eta(Z) \left((\nabla_X \phi h)Y - (\nabla_Y \phi h)X \right) \right] \\ &+ \nu \left[\eta(X) \left((\nabla_Y \phi h)Z - (\nabla_Z \phi h)Y \right) \right] + R(X,Y)\phi hZ + R(Y,Z)\phi hX \\ &- \alpha \left[R(X,Y)Z + R(Y,Z)X + R(Z,X)Y \right] + R(Z,X)\phi hY \end{split}$$

for all vector fields X, Y, Z. Putting ξ instead of Z in the above equation, we obtain

$$\begin{array}{lll} 0 &=& \xi(\kappa) \left[\eta(Y)X - \eta(X)Y \right] + \xi(\mu) \left[\eta(Y)hX - \eta(X)hY \right] \\ &+ \xi(\nu) \left[\eta(Y)\phi hX - \eta(X)\phi hY \right] - X(\kappa)\phi^2 Y + X(\mu)hY \\ &+ X(\nu)\phi hY + Y(\kappa)\phi^2 X - Y(\mu)hX - Y(\nu)\phi hX \\ &+ \mu\eta(Y) \left[-(\kappa + \alpha^2)\phi X - \mu\phi hX - (\alpha - \nu)hX \right] \\ &+ \mu(\kappa + \alpha^2) \left[\eta(Y)\phi X - \eta(X)\phi Y + 2g(\phi X, Y)\xi \right] \\ &+ \mu^2 \left[\eta(Y)\phi hX - \eta(X)\phi hY \right] + \mu(\alpha - \nu) \left[\eta(Y)hX - \eta(X)hY \right] \\ &+ \mu\eta(X) \left[(\kappa + \alpha^2)\phi Y + \mu h\phi Y + (\alpha - \nu)hY \right] \\ &+ \nu\eta(Y) \left[-(\kappa + \alpha^2)\phi^2 X + \mu hX - (\alpha - \nu)\phi hX \right] \\ &- \nu(\kappa + \alpha^2) \left[\eta(Y)X - \eta(X)Y \right] - \nu\mu \left[\eta(Y)hX - \eta(X)hY \right] \\ &+ \nu(\alpha - \nu) \left[\eta(Y)\phi hX - \eta(X)\phi hY \right] + \nu\eta(X)(\kappa + \alpha^2)\phi^2 Y \\ &+ \nu\eta(X) \left[-\mu hY + (\alpha - \nu)\phi hY \right] - R(\xi, Y)\phi hX + R(\xi, X)\phi hY. \end{array}$$

Finally, substituting (21), (24) and (25) in the last equation, we deduce (30). \Box

Lemma 3.4. Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost α -cosymplectic (κ, μ, ν) -space. For every $p \in N$, there exists neighborhood W of p and orthonormal local vector fields $X_i, \phi X_i$ and ξ for $i = 1, \ldots, n$, defined on W, such that

(31)
$$hX_i = \lambda X_i, \quad h\phi X_i = -\lambda X_i, \quad h\xi = 0,$$

for i = 1, ..., n, where $\lambda = \sqrt{-(\kappa + \alpha^2)}$.

Proof. According to Koufogiorgos ([13], Lemma 4.2), the proof can be easily carried out for almost α -cosymplectic (κ, μ, ν)-space.

Theorem 3.5. Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost α -cosymplectic (κ, μ, ν) -space for n > 1. Then the functions κ, μ and ν are non-constant functions on M^{2n+1} such that $df \wedge \eta = 0$.

Proof. By means of Lemma 1, the existence of a local orthonormal basis $\{X_i, \phi X_i, \xi\}$ such that

$$he_i = \lambda e_i, \ h\phi e_i = -\lambda \phi e_i, \ h\xi = 0, \ \lambda = \sqrt{-(\kappa + \alpha^2)},$$

on W. Substituting $X = e_i$ and $Y = \phi e_i$ in (30), we obtain

$$[e_i(\kappa) - \lambda e_i(\mu) - \lambda \phi e_i(\nu)] \phi e_i + [\lambda e_i(\nu) - \lambda \phi e_i(\mu) - \phi e_i(\kappa)] = 0.$$

Since $\{e_i, eX_i\}$ is linearly independent, we have

(32)
$$e_i(\kappa) - \lambda e_i(\mu) - \lambda \phi e_i(\nu) = 0, \\ \lambda e_i(\nu) - \lambda \phi e_i(\mu) - \phi e_i(\kappa) = 0$$

In addition, replacing X and Y by e_i and e_j , respectively, for $i \neq j$, (30) provides that

(33)
$$e_i(\kappa) + \lambda e_i(\mu) = 0,$$
$$e_i(\nu) = 0.$$

Besides, substituting $X = \phi e_i$ and $Y = \phi e_j$ in (30) for $i \neq j$, we get

(34)
$$\phi e_i(\kappa) - \lambda \phi e_i(\mu) = 0, \ \phi e_i(\nu) = 0$$

In view of (32), (34) and (33) we deduce

$$e_i(\kappa) = e_i(\mu) = e_i(\nu) = \phi e_i(\kappa) = \phi e_i(\mu) = \phi e_i(\nu) = 0.$$

For an arbitrary function κ , we obtain $d\kappa = \xi(\kappa)\eta$ in the last equation system. In this way, we have

(35)
$$0 = d^2\kappa = d(d\kappa) = d\xi(\kappa) \wedge \eta + \xi(\kappa)d\eta.$$

Since $d\eta = 0$, it follows that $d\xi(\kappa) \wedge \eta = 0$. Thus the proof is completed.

Corollary 3.6. The functions κ , μ and ν are constants iff these functions are constants along the characteristic vector field ξ for almost α cosymplectic (κ , μ , ν)-space with n > 1.

4. On Three Dimensional Case

In this section, we investigate the existence of almost α -cosymplectic (κ, μ, ν) -space in 3-dimensional case.

Let U be the open subset of M^3 where the tensor field $h \neq 0$ and let U'be the open subset of points $p \in M^3$ such that h = 0 in a neighborhood of p. Thus the association set of $U \cup U'$ is an open and dense subset of M^3 . For every $p \in U$ there exists an open neighborhood of p such that $he = \lambda e$ and $h\phi e = -\lambda\phi e$, where λ is a positive non-vanishing smooth function. So every properties satisfying on $U \cup U'$ is valid on M^3 . Therefore, there exists a local orthonormal basis $\{e, \phi e, \xi\}$ of smooth eigenfunctions of h in a neighborhood of p for every point $p \in U \cup U'$. This basis is called ϕ -basis. So we state the following Lemma.

Lemma 4.1. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. Then we have the following relations for the covariant derivatives on U

$$\begin{aligned} \nabla_{\xi} e &= -a\phi e, & \nabla_{\xi} \phi e &= ae, \\ \nabla_{e} \xi &= \alpha e - \lambda \phi e, & \nabla_{\phi e} \xi &= -\lambda e + \alpha \phi e, \\ \nabla_{e} e &= b\phi e - \alpha \xi, & \nabla_{\phi e} \phi e &= ce - \alpha \xi, \\ \nabla_{e} \phi e &= -be + \lambda \xi, & \nabla_{\phi e} e &= -c\phi e + \lambda \xi, \end{aligned}$$

where a is a smooth function, $b = g(\nabla_e e, \phi e)$ and $c = g(\nabla_{\phi e} \phi e, e)$ defined by

$$b = \frac{1}{2\lambda} \left[(\phi e)(\lambda) + \sigma(e) \right], \quad \sigma(e) = S(\xi, e) = g(Q\xi, e),$$

and

$$c = \frac{1}{2\lambda} \left[e(\lambda) + \sigma(\phi e) \right], \quad \sigma(\phi e) = S(\xi, \phi e) = g(Q\xi, \phi e),$$

respectively.

1

Proof. Replacing X by e and ϕe in (3), we get

 $\nabla_e \xi = \alpha e - \lambda \phi e, \quad \nabla_{\phi e} \xi = \alpha \phi e - \lambda e,$

for any vector field X. Furthermore, we have

 $\nabla_{\xi} e = -g(e, \nabla_{\xi} \phi e) \phi e$

where a is defined by $a = g(e, \nabla_{\xi} \phi e)$. Following this procedure, the other covariant derivative equalities can easily find. We recall that the curvature tensor R is given by

(36)
$$\begin{array}{l} R(X,Y)Z = -S(X,Z)Y + S(Y,Z)X - g(X,Z)QY \\ +g(Y,Z)QX + \frac{r}{2}[g(X,Z)Y - g(Y,Z)X], \end{array}$$

in dimension 3 for any vector fields X, Y, Z. Putting $X = e, Y = \phi e$ and $Z = \xi$ in the last equation, we obtain

$$R(e,\phi e)\xi = -g(Qe,\xi)\phi e + g(Q\phi e,\xi)e.$$

Since $\sigma(X) = g(Q\xi, X)$, we have

(37)
$$R(e,\phi e)\xi = -\sigma(e)\phi e + \sigma(\phi e)e,$$

for any vector field X. By using the curvature properties of the Riemannian tensor, we also have

(38)
$$R(e,\phi e)\xi = (2\lambda c - e(\lambda))e + (-2\lambda b + (\phi e)(\lambda))\phi e.$$

Thus combining (38) and (37), we deduce

(39)
$$\sigma(e) = 2\lambda b - (\phi e)(\lambda), \ \sigma(\phi e) = 2\lambda c - e(\lambda).$$

Hence, the functions b and c are obvious from (39).

Proposition 4.2. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. On U, we have

(40)
$$\nabla_{\xi}h = 2ah\phi + \xi(\lambda)s,$$

where s is the tensor field of type (1,1) defined by $s\xi = 0$, se = e and $s\phi e = -\phi e$.

Proof. First, differentiating of the tensor field h along ξ we have

$$(\nabla_{\xi}h)e = -2\lambda a\phi e + \xi(\lambda)e, \ (\nabla_{\xi}h)\phi e = -2\lambda ae - \xi(\lambda)\phi e.$$

In addition, we also have $(\nabla_{\xi} h)\xi = 0$. With the help of the last equation, we obtain (40). It is notice that tr(s) = 0.

Proposition 4.3. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. Then we have

(41)
$$h^2 - \alpha^2 \phi^2 = \frac{tr(l)}{2} \phi^2.$$

Proof. Using (13), we get $tr(l) = -2 \left[\alpha^2 + \lambda^2 \right]$ for all vector fields on M^3 . Besides, we have

$$h^{2}e - \alpha^{2}\phi^{2}e = \frac{tr(l)}{2}\phi^{2}e, \ h^{2}\phi e - \alpha^{2}\phi^{3}e = \frac{tr(l)}{2}\phi^{2}\phi e.$$

It follows that $h^2\xi - \alpha^2\phi^2\xi = \frac{tr(l)}{2}\phi^2\xi = 0$. Thus it completes the proof.

Lemma 4.4. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. Then the Ricci operator Q satisfies the following relation

(42)
$$Q = \tilde{a}I + b\eta \otimes \xi + 2\alpha\phi h + \phi(\nabla_{\xi}h) - \sigma(\phi^{2}) \otimes \xi + \sigma(e)\eta \otimes e + \sigma(\phi e)\eta \otimes \phi e,$$

where the smooth functions \tilde{a} and \tilde{b} are defined by $\tilde{a} = \frac{1}{2}r + \alpha^2 + \lambda^2$ and $\tilde{b} = -\frac{1}{2}r - 3\alpha^2 - 3\lambda^2$ respectively.

Proof. For 3-dimensional case, we deduce

$$lX = tr(l)X - S(X,\xi)\xi + QX - \eta(X)Q\xi - \frac{r}{2}\left(X - \eta(X)\xi\right),$$

for any vector field X. It follows that

$$QX = \alpha^2 \phi^2 X + 2\alpha \phi h X - h^2 X + \phi(\nabla_{\xi} h) X - tr(l) X$$

-S(X, \xi) \xi + \eta(X) Q \xi + \frac{r}{2} (X - \eta(X) \xi).

Moreover, since $S(X,\xi) = -S(\phi^2 X,\xi) + \eta(X)tr(l)$, we have

(43)
$$QX = -\frac{tr(l)}{2}\phi^2 X + 2\alpha\phi hX + \phi(\nabla_{\xi}h)X - tr(l)X \\ -S(\phi^2 X,\xi)\xi + \eta(X)tr(l)\xi + \eta(X)Q\xi - \frac{r}{2}\phi^2 X,$$

and

(44)
$$Q\xi = \sigma(e)e + \sigma(\phi e)\phi e + tr(l)\xi.$$

Next, using (43) and (44) we obtain

$$QX = \begin{bmatrix} \frac{1}{2}r + \alpha^2 + \lambda^2 \end{bmatrix} X + \begin{bmatrix} -\frac{1}{2}r - 3\alpha^2 - 3\lambda^2 \end{bmatrix} \eta(X)\xi + 2\alpha\phi hX + \phi(\nabla_{\xi}h)X - S(\phi^2X,\xi)\xi + \eta(X)\sigma(e)e + \eta(X)\sigma(\phi e)\phi e.$$

Thus (42) is obvious for any vector field X.

Theorem 4.5. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. If $\sigma \equiv 0$, then the (κ, μ, ν) -structure exists on every open and dense subset of M^3 .

Proof. Substituting $\sigma \equiv 0$ and $s = \frac{1}{\lambda}h$ in (42) we have

(45)
$$Q = \tilde{a}I + \tilde{b}\eta \otimes \xi + 2ah + (2\alpha + \frac{\xi(\lambda)}{\lambda})\phi h,$$

which yields

(46)
$$Q\xi = tr(l)\xi,$$

for any vector fields on M^3 . Since $C \equiv 0$, taking ξ instead of Z in (36) we obtain

(47)
$$R(X,Y)\xi = -S(X,\xi)Y + S(Y,\xi)X + \eta(Y)QX - \eta(X)QY - \frac{r}{2}[\eta(Y)X - \eta(X)Y],$$

and replacing X by ξ , then we get $Q\xi = tr(l)$. Hence, it follows that

(48)
$$S(Y,\xi) = tr(l)\eta(Y)$$

for any vector field Y. Thus by virtue of (45), (46) and (48), we have

$$R(X,Y)\xi = -\left(\alpha^2 + \lambda^2\right)\left(\eta(Y)X - \eta(X)Y\right) +2a(\eta(Y)hX - \eta(X)hY) + \left(2\alpha + \frac{\xi(\lambda)}{\lambda}\right)(\eta(Y)\phi hX - \eta(X)\phi hY).$$

Therefore, we obtain κ, μ and ν defined $\kappa = \frac{tr(l)}{2}, \mu = 2a$ and $\nu = 2\alpha + \frac{\xi(\lambda)}{\lambda}$, respectively.

Theorem 4.6. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. If the following relation is held

(49)
$$Q\phi - \phi Q = f_1 h\phi + f_2 h,$$

then the manifold is an almost α -cosymplectic (κ, μ, ν) -space, where the functions $f_1, f_2 \in C^{\infty}$.

280

Proof. By the hypothesis, we have

(50)
$$\begin{aligned} \alpha^2 \phi^2 X + 2\alpha \phi h X - h^2 X + \phi(\nabla_{\xi} h) X \\ = Q X - 2tr(l)\eta(X)\xi + tr(l)X - \frac{r}{2} \left(X - \eta(X)\xi\right). \end{aligned}$$

Applying ϕ both two sides of (50), we get

(51)
$$-\alpha^2 \phi X - \phi h^2 X - 2\alpha h X - (\nabla_{\xi} h) X = \phi Q X + tr(l) \phi X - \frac{r}{2} \phi X.$$

Also, replacing X by ϕX in (51), we find

(52)
$$\begin{aligned} -\alpha^2 \phi X + 2\alpha h X - h^2 \phi X + (\nabla_{\xi} h) X \\ = Q \phi X + tr(l) \phi X - \frac{r}{2} \phi X. \end{aligned}$$

Then combining (51) and (52) we deduce

$$Q\phi X + \phi Q X = -2 \left[\alpha^2 \phi + \phi h^2\right] X - 2tr(l)\phi X + r\phi X.$$

Next, substituting (41) in the last equation and using (49), we obtain

$$Q\phi X + \phi QX = -tr(l)\phi X + r\phi X.$$

By virtue of (49), (51) and (52) we also obtain

(53)
$$(\nabla_{\xi}h)X = \frac{1}{2}f_1h\phi X + \frac{1}{2}(f_2 - 4\alpha)hX.$$

Using (53) in (42), we have

(54)
$$QX = \tilde{a}X + \tilde{b}\eta(X)\xi + 2\alpha\phi hX + \frac{1}{2}f_1hX + \frac{1}{2}(f_2 - 4\alpha)\phi hX,$$

for $\sigma \equiv 0$. Finally, substituting (54) in (47), we deduce

(55)
$$\begin{array}{l} R(X,Y)\xi = (tr(l) + \tilde{a} - \frac{r}{2}) \left[\eta(Y)X - \eta(X)Y \right] \\ + \frac{1}{2}f_1 \left[\eta(Y)hX - \eta(X)hY \right] + \frac{1}{2}f_2 \left[\eta(Y)\phi hX - \eta(X)\phi hY \right]. \end{array}$$

Follows from (55), there exists a (κ, μ, ν) -space where $\tilde{a} = \frac{1}{2}r + \alpha^2 + \lambda^2$.

Example 4.7. Let $(M^3, \phi, \xi, \eta, g)$ be an almost α -cosymplectic manifold. Then there exists a (κ, μ, ν) -structure such that

$$\begin{aligned} R(X,Y)\xi &= \kappa(\eta(Y)X - \eta(X)Y) + 2a(\eta(Y)hX - \eta(X)hY) \\ &+ (2\alpha + \frac{\xi(\lambda)}{\lambda})(\eta(Y)\phi hX - \eta(X)\phi hY), \end{aligned}$$

where the functions $\kappa, \mu, \nu \in \mathcal{R}^3_{\eta}(M)$ defined by

$$d\kappa = \xi(\kappa)\eta, \ d\mu = \xi(\mu)\eta, \ d\nu = \xi(\nu)\eta.$$

Now, let us consider ϕ -basis on M^3 such that $he = \lambda e$, $h\phi e = -\lambda \phi e$ and $h\xi = 0$. With respect to ϕ -basis, we have

$$\begin{array}{ll} e(\kappa) &=& (d\kappa)e = \xi(\kappa)\eta(e) = 0, \\ e(\mu) &=& (d\mu)e = \xi(\mu)\eta(e) = 0, \\ e(\nu) &=& (d\nu)e = \xi(\nu)\eta(e) = 0, \end{array}$$

and similarly, we have

$$(\phi e)(\kappa) = 0, \ (\phi e)(\mu) = 0, \ (\phi e)(\nu) = 0.$$

Moreover, it follows that

$$\begin{aligned} \sigma(e) &= 0, \sigma(\phi e) = 0, \ \lambda = \sqrt{-(\kappa + \alpha^2)}, \\ b &= \frac{1}{2\lambda}(\phi e)(\lambda) = 0, \ c = \frac{1}{2\lambda}e(\lambda) = 0. \end{aligned}$$

Consider the three dimensional manifold

$$M^3 = \{(x, y, z) \in \mathbb{R}^3, \ z \neq 0\},\$$

where (x, y, z) are the cartesian coordinates in \mathbb{R}^3 . We define three vector fields on M^3 as

$$\begin{split} e &= \frac{\partial}{\partial x}, \ \phi e = \frac{\partial}{\partial y}, \\ \xi &= \left[\alpha x - y(e^{-2\alpha z} + z)\right] \frac{\partial}{\partial x} \\ &+ \left[x(z - e^{-2\alpha z}) + \alpha y\right] \frac{\partial}{\partial y} + \frac{\partial}{\partial z}, \end{split}$$

Then we set

$$\begin{bmatrix} e, \phi e \end{bmatrix} = 0, \begin{bmatrix} e, \xi \end{bmatrix} = \alpha e + (z - e^{-2\alpha z})\phi e, \begin{bmatrix} \phi e, \xi \end{bmatrix} = -(e^{-2\alpha z} + z)e + \alpha \phi e.$$

Moreover, the matrice form of the metric tensor g, the tensor fields φ and h are given by

$$g = \begin{pmatrix} 1 & 0 & -d \\ 0 & 1 & -k \\ -d & -k & 1 + d^2 + k^2 \end{pmatrix}$$

and

$$\phi = \begin{pmatrix} 0 & -d & k \\ 1 & 0 & -d \\ 0 & 0 & 0 \end{pmatrix}, \ h = \begin{pmatrix} e^{-2z} & 0 & -de^{-2z} \\ 0 & -e^{-2z} & ke^{-2z} \\ 0 & 0 & 0 \end{pmatrix},$$

where

$$d = \alpha x - y(e^{-2\alpha z} + z),$$

$$k = x(z - e^{-2\alpha z}) + \alpha y.$$

Let η be the 1-form defined by $\eta = k_1 dx + k_2 dy + k_3 dz$ for all vector fields on M^3 . Since $\eta(X) = g(X, \xi)$, we obtain that $\eta(e) = 0$, $\eta(\phi e) = 0$ and $\eta(\xi) = 1$. Then we get $\eta = dz$ for all vector fields. Since $d\eta = d(dz) = d^2 z$, we have $d\eta = 0$. Using Koszul's formula, we have seen that $d\Phi = 2\alpha\eta \wedge \Phi$. Hence, M^3 is an almost α -cosymplectic manifold. Thus we obtain

$$R(X,Y)\xi = -(e^{-4\alpha z} + \alpha^2) \left[\eta(Y)X - \eta(X)Y\right] + 2z \left[\eta(Y)hX - \eta(X)hY\right],$$

where $\kappa = -(e^{-4\alpha z} + \alpha^2)$ and $\mu = 2z$.

Acknowledgement: The author would like to thank the anonymous referee for the useful improvements suggested.

References

- D. E. Blair, T. Koufogiorgos, B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.
- [2] E. Boeckx, A full classification of contact metric (κ, μ) -spaces, Illinois J. Math. **44(1)** (2000), 212-219.
- [3] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds with a condition of η -parallelism, Diff. Geo. and its App. **27** (2009), 671-679.
- [4] G. Dileo, A.M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geometry 93 (2009), 46-61.
- [5] H. Öztürk, N. Aktan, C. Murathan, A.T. Vanlı, Almost α-cosymplectic fmanifolds, The J. Alexandru Ioan Cuza Univ. 60 (2014), 211-226.
- [6] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math. 792 (1980), 435-443.
- [7] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. J. 24 (1972), 93-103.
- [8] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Math., Singapore, 1984.
- [9] N. Aktan, M. Yıldırım, C. Murathan, Almost f-Cosymplectic Manifolds, Mediterr. J. Math. 11(2) (2014), 775-787.
- [10] P. Dacko, Z. Olszak, On almost cosymplectic (-1, μ, 0)-spaces, Cent. Eur. J. Math. 3(2) (2005), 318-330.
- [11] P. Dacko, Z. Olszak, On almost cosymplectic (κ, μ, ν)-spaces, Banach Center Publ. 69 (2005), 211-220.
- [12] T. Koufogiorgos, C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43(4) (2000), 440-447.

- [13] T. Koufogiorgos, M. Markellos, J. Papantoniou, The harmonicity of the reeb vector field on contact metric 3-manifolds, Pasific J. Math. 234(2) (2008), 325-344.
- [14] T.W. Kim, H.K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sinica Eng. Ser. 21(4) (2005), 841-846.
- [15] Z. Olszak, Locally conformal almost cosymplectic manifolds, Coll. Math. 57 (1989), 73-87.

Hakan Öztürk Afyon Vocational School, Afyon Kocatepe University, Campus of ANS, Afyonkarahisar/TURKEY. E-mail: hozturk@aku.edu.tr