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RELATIVE (p, q)-ϕ ORDER AND RELATIVE (p, q)-ϕ

TYPE ORIENTED GROWTH ANALYSIS OF

COMPOSITE ENTIRE FUNCTIONS

Tanmay Biswas

Abstract. The main aim of this paper is to study some growth
properties of composite entire functions on the basis of relative
(p, q)-ϕ type and relative (p, q)-ϕ weak type where p and q are
any two positive integers and ϕ (r) : [0,+∞)→ (0,+∞) be a non-
decreasing unbounded function.

1. Introduction, Definitions and Notations

We denote by C the set of all finite complex numbers. Let f be
an entire function defined on C and Mf (r) = max {|f (z)| : |z| = r}.
Since Mf (r) is strictly increasing and continuous, therefore there exists

its inverse function M−1f : (|f (0)| ,∞) → (0,∞) with lim
s→∞

M−1f (s) =

∞. The maximum term µf (r) of entire f can be defined as µf (r) =
max
n≥0

(|an|rn) . Obviously µf (r) is also a real and increasing function of

r. For x ∈ [0,∞) and k ∈ N, we define exp[k] x = exp
(
exp[k−1] x

)
and

log[k] x = log
(

log[k−1] x
)

where N be the set of all positive integers. We

also denote log[0] x = x, log[−1] x = expx, exp[0] x = x and exp[−1] x =
log x. Further we assume that throughout the present paper a, b, c, d,
p, q, m, n, l, x and y always denote positive integers. Also throughout
the paper occasionally ϕ1 (r) will stand for r. Now considering this, let
us recall that Juneja et al. [7] defined the (p, q)-th order and (p, q)-th
lower order of an entire function, respectively, as follows:
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Definition 1.1. [7] The (p, q)-th order and (p, q)-th lower order of
an entire function f are defined as:

ρ(p,q) (f)

λ(p,q) (f)
= lim

r→+∞
sup
inf

log[p]Mf (r)

log[q] r
,

where p ≥ q.

Extending the above notion, recently Shen et al. [9] introduced the
new concept of (p, q)-ϕ order and (p, q)-ϕ lower order of entire function
which are as follows:

Definition 1.2. [9] Let ϕ (r) : [0,+∞)→(0,+∞) be a non-decreasing
unbounded function, and p ≥ q. Then the (p, q)-ϕ order and (p, q)-ϕ
lower order of an entire function f are defined as:

ρ(p,q) (f, ϕ)

λ(p,q) (f, ϕ)
= lim

r→+∞
sup
inf

log[p]Mf (r)

log[q] ϕ (r)
.

The function f is said to be of regular (p, q)-ϕ growth when (p, q)-ϕ
order and (p, q)-ϕ lower order of f are the same. Functions which are
not of regular (p, q)-ϕ growth are said to be of irregular (p, q)-ϕ growth.

However the above definitions are very useful for measuring the
growth of entire functions. If ϕ(r) = r, then Definition 1.1 is the special
case of the above definition. Moreover if p = 2, q = 1 and ϕ(r) = r,

then we respectively denote ρ(2,1) (f, r) and λ(2,1) (f, r) by ρ (f) and λ (f)
which are classical growth indicators such as order and lower order of
entire function f .

Further the definition of order (respectively lower order) does not
seem to be feasible if an entire function f is of order zero (respectively
lower order zero). To over come this situation and in order to study the
growth of an entire function f of order zero (respectively lower order
zero) precisely, Chern [6] introduced the concept of logarithmic order
(respectively logarithmic lower order) by increasing log+ once in the
denominator. Therefore the definition of logarithmic order ρlog (f) (re-
spectively logarithmic lower order λlog (f)) of an entire function f is
define as:

Definition 1.3. [6] The logarithmic order ρlog (f) (respectively log-
arithmic lower order λlog (f)) of an entire function f is

ρlog (f) = lim sup
r→+∞

log[2]Mf (r)

log[2] r
= lim sup

r→+∞

log[2]Mf (r)

log[1+1] r
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λlog (f) = lim inf

r→+∞

log[2]Mf (r)

log[2] r
= lim inf

r→+∞

log[2]Mf (r)

log[1+1] r

)
.

Definition 1.3 is a special case of Definition 1.1 for p = q = 2. Also
if p = q = 2 and ϕ (r) = r, then Definition 1.3 is also a special case of
Definition 1.2.

Similarly, Definition 1.1 does not seem to be feasible if an entire
function f is of (p, q)-th order zero. In this situation one may introduce
the concept of l logarithmic (p, q)-th order and l logarithmic (p, q)-th
lower order of an entire function in the following way:

Definition 1.4. The l logarithmic (p, q)-th order ρ
(p,q)

log[l]
(f) and l log-

arithmic (p, q)-th lower order λ
(p,q)

log[l]
(f) of an entire function f are defined

as:

ρ
(p,q)

log[l]
(f)

λ
(p,q)

log[l]
(f)

= lim
r→+∞

sup
inf

log[p]Mf (r)

log[q+l] r
,

where p ≥ q. Now the two cases may arise: either p ≥ q+l or p < q+l. If
p = 2, q = 1 and l = 1, then Definition 1.3 is a special case of Definition
1.4.

In fact Definition 1.2 itself explain the above situation when p ≥ q
and l > p− q as follows:

ρ(p,q)
(
f, log[l] r

)
λ(p,q)

(
f, log[l] r

) = lim
r→+∞

sup
inf

log[p]Mf (r)

log[q]
(

log[l] r
)

= lim
r→+∞

sup
inf

log[p]Mf (r)

log[q+l] r
=

ρ(p,q+l) (f)

λ(p,q+l) (f)
,

and in this case obviously p < q + l.

Combining Definition 1.1 and Definition 1.4, recently Biswas (see,
e.g., [3]) introduce a new definitions of the (p, q)-th order and (p, q)-th
lower order of an entire function avoiding the restriction p ≥ q of the
original definitions introduced by Juneja et al. [7]. Subsequently Biswas
(see, e.g., [3]) also rewrite Definition 1.2 avoiding the restriction p ≥ q
of the original definitions introduced by Shen et al. [9].

Howeverextending the notion of index-pair(p, q) introduced by Juneja
et al. [7], one may also introduce the definition of index-pair (p, q)-ϕ in
the following manner:
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Definition 1.5. An entire function f is said to have index-pair (p, q)-

ϕ if b < ρ(p,q) (f, ϕ) < ∞ and ρ(p−1,q−1) (f, ϕ) is not a nonzero finite
number, where b = 1 if p = q and b = 0 for otherwise. Moreover if
0 < ρ(p,q) (f, ϕ) <∞, then

ρ(p−n,q) (f, ϕ) =∞ for n < p,

ρ(p,q−n) (f, ϕ) = 0 for n < q,

ρ(p+n,q+n) (f, ϕ) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ(p,q) (f, ϕ) <∞, one can easily verify that
λ(p−n,q) (f, ϕ) =∞ for n < p,

λ(p,q−n) (f, ϕ) = 0 for n < q,

λ(p+n,q+n) (f, ϕ) = 1 for n = 1, 2, · · · .

If ϕ(r) = r, then Definition 1.5 reduces to the the definition of index-
pair (p, q) of an entire function. However, mainly the growth investiga-
tion of entire functions has usually been done through their maximum
moduli in comparison with those of exponential function. But if one
is paying attention to evaluate the growths of any entire function with
respect to a new entire function, the notion of relative growth indicator
(see e.g. [1, 2]) will come. Extending this notion, Sánchez Ruiz et al. [8]
gave the definitions of relative (p, q)-th order and relative (p, q)-th lower
order of an entire function with respect to another entire function in the
light of index-pair. Further revisiting the ideas developed by Shen et
al. [9], recently Biswas [3] introduce the definitions of relative (p, q)-ϕ
order and relative (p, q)-ϕ lower order of an entire function with respect
to another entire function in the following way:

Definition 1.6. [3] Let ϕ (r) : [0,+∞)→(0,+∞) be a non-decreasing
unbounded function. Also let f and g be any two entire functions with
index-pair (m, q)-ϕ and (m, p) respectively. The relative (p, q)-ϕ order
and the relative (p, q)-ϕ lower order of f with respect to g are defined
as

ρ
(p,q)
g (f, ϕ)

λ
(p,q)
g (f, ϕ)

= lim
r→∞

sup
inf

log[p]M−1g (Mf (r))

log[q] ϕ (r)
.

Further if relative (p, q)-ϕ order and the relative (p, q)-ϕ lower or-
der of f with respect to g are the same, then f is called a function of
regular relative (p, q)-ϕ growth with respect to g. Otherwise, f is said
to be irregular relative (p, q)-ϕ growth.with respect to g. Also for any
non-decreasing unbounded function ϕ (r) : [0,+∞) → (0,+∞), if ϕ (r)

satisfies the condition lim
r→+∞

log[q] r

log[q] ϕ(r)
= α where α > 0, then for any
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entire function f , one can easily verify that ρ
(p,q)
g (f, ϕ) = αρ

(p,q)
g (f) and

λ
(p,q)
g (f, ϕ) = αλ

(p,q)
g (f).

In this connection we also introduce the following definition which
will be needed in the sequel:

Definition 1.7. An entire function f is said to have relative index-

pair (p, q)-ϕ with respect to an entire function g if b < ρ
(p,q)
g (f, ϕ) <∞

and ρ
(p−1,q−1)
g (f, ϕ) is not a nonzero finite number, where b = 1 if p = q

and b = 0 for otherwise. Moreover if 0 < ρ
(p,q)
g (f, ϕ) <∞, then

ρ
(p−n,q)
g (f, ϕ) =∞ for n < p,

ρ
(p,q−n)
g (f, ϕ) = 0 for n < q,

ρ
(p+n,q+n)
g (f, ϕ) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ
(p,q)
g (f, ϕ) <∞, one can easily verify that

λ
(p−n,q)
g (f, ϕ) =∞ for n < p,

λ
(p,q−n)
g (f, ϕ) = 0 for n < q,

λ
(p+n,q+n)
g (f, ϕ) = 1 for n = 1, 2, · · · .

Throughout the paper, whenever we deal with any entire function
f having relative index-pair (p, q)-ϕ with respect to an entire function
g, we mean that f has positive relative (p, q)-ϕ lower order and finite
relative (p, q)-ϕ order with respect to g.

Now in order to refine the above growth scale, one may introduce the
definitions of other growth indicators, such as relative (p, q)-ϕ type and
relative (p, q)-ϕ lower type of entire functions with respect to another
entire function which are as follows:

Definition 1.8. [3] Let ϕ : [0,+∞)→ (0,+∞) be a non-decreasing
unbounded function. The relative (p, q)-ϕ type and the relative (p, q)-ϕ
lower type of an entire function f with respect to another entire function

g having non-zero finite relative (p, q)-ϕ order ρ
(p,q)
g (f, ϕ) are defined as

:

σ
(p,q)
g (f, ϕ)

σ
(p,q)
g (f, ϕ)

= lim
r→+∞

sup
inf

log[p−1]M−1g (Mf (r))[
log[q−1] ϕ (r)

]ρ(p,q)g (f,ϕ)
.

Analogously, to determine the relative growth of f having same non
zero finite relative (p, q)-ϕ lower order with respect to g, one can intro-

duce the definition of relative (p, q)-ϕ weak type τ
(p,q)
g (f) and the growth
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indicator τ
(p,q)
g (f) of f with respect to g of finite positive relative (p, q)-ϕ

lower order λ
(p,q)
g (f) in the following way:

Definition 1.9. [3] Let ϕ : [0,+∞)→ (0,+∞) be a non-decreasing

unbounded function. The relative (p, q)-ϕ weak type τ
(p,q)
g (f, ϕ) and

the growth indicator τ
(p,q)
g (f, ϕ) of an entire function f with respect to

another entire function g having non-zero finite relative (p, q)-ϕ lower

order λ
(p,q)
g (f, ϕ) are defined as :

τ
(p,q)
g (f, ϕ)

τ
(p,q)
g (f, ϕ)

= lim
r→+∞

sup
inf

log[p−1]M−1g (Mf (r))[
log[q−1] ϕ (r)

]λ(p,q)g (f,ϕ)
.

If we consider ϕ(r) = r, then ρ
(p,q)
g (f, r) (λ

(p,q)
g (f, r)), σ

(p,q)
g (f, r)

(σ
(p,q)
g (f, r)) and τ

(p,q)
g (f, r) are respectively known as relative (p, q)-

th order (relative (p, q)-th lower order), relative (p, q)-th type (rela-
tive (p, q)-th lower type) and relative (p, q)-th weak type of f with

respect to g. Further for ϕ(r) = r, we simplify to denote ρ
(p,q)
g (f, r)

(λ
(p,q)
g (f, r)), σ

(p,q)
g (f, r) (σ

(p,q)
g (f, r)) and τ

(p,q)
g (f, r) (τ

(p,q)
g (f, r)) by

ρ
(p,q)
g (f) (λ

(p,q)
g (f)), σ

(p,q)
g (f) (σ

(p,q)
g (f)) and τ

(p,q)
g (f) (τ

(p,q)
g (f)) re-

spectively.
In terms of maximum terms of entire functions, Definition 1.6 can be

reformulated as:

Definition 1.10. The growth indicators ρ
(p,q)
g (f, ϕ) and λ

(p,q)
g (f, ϕ)

of an entire function f with respect to another entire function g are
defined as:

ρ
(p,q)
g (f, ϕ)

λ
(p,q)
g (f, ϕ)

= lim
r→∞

sup
inf

log[p] µ−1g (µf (r))

log[q] ϕ (r)
.

In fact, for any nondecreasing unbounded function ϕ (r) : [0,+∞)→
(0,+∞), if we assume lim

r→+∞
log[q] ϕ(ar)

log[q] ϕ(r)
= 1 for all α > 0, then in view of

Lemma 6 of [4], one can easily verify the equivalence of Definition 1.6
and Definition 1.10.

The purpose of this paper is to deal with some growth properties of
composite entire functions in the light of their relative (p, q)-ϕ order, rel-
ative (p, q)-ϕ type and relative (p, q)-ϕ weak type after improving some
results of Xu et.al [10]. We use the standard notations and definitions
of the theory of entire functions which are available in [11] and [12], and
therefore we do not explain those in details.
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2. Lemma

In this section we present a lemma which will be needed in the sequel.

Lemma 2.1. [5] Let f and g are any two entire functions with g (0) =

0. Also let β satisfy 0 < β < 1 and c (β) = (1−β)2
4β . Then for all

sufficiently large values of r,

Mf (c (β)Mg (βr)) ≤Mf◦g (r) ≤Mf (Mg (r)) .

In addition if β = 1
2 , then for all sufficiently large values of r,

Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

))
.

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f , g, h be any three entire functions such that
the relative index pair of f with respect to h and the index pair of g are
(p, q)-ϕ1 and (m,n)-ϕ respectively. Also let ϕ (r) : [0,+∞) → (0,+∞)

is a nondecreasing unbounded function and satisfies lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
=

1 for all α > 0. Then
(i) the relative index-pair of f ◦ g is (p, n)-ϕ when q = m and either

λ
(p,q)
h (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0. Also

(a) λ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) ≤ ρ(p,n)h (f ◦ g, ϕ) 6

ρ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) if λ
(p,q)
h (f, ϕ1) > 0 and

(b) ρ
(p,q)
h (f, ϕ1)λ

(m,n) (g, ϕ) ≤ ρ(p,n)h (f ◦ g, ϕ) 6

ρ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) if λ(m,n) (g, ϕ) > 0;

(ii) the relative index-pair of f ◦ g is (p, q + n−m)-ϕ when q > m and

either λ
(p,q)
h (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0. Also

(a) λ
(p,q)
h (f, ϕ1)≤ρ(p,q+n−m)

h (f ◦ g, ϕ)6ρ(p,q)h (f, ϕ1) if λ
(p,q)
h (f, ϕ1)>0

and

(b) ρ
(p,q+n−m)
h (f ◦ g, ϕ) = ρ

(p,q)
h (f, ϕ1) if λ(m,n) (g, ϕ) > 0;
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(iii) the relative index-pair of f ◦ g is (p+m− q, n)-ϕ when q < m and

either λ
(p,q)
h (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0. Also

(a) ρ
(p+m−q,n)
h (f ◦ g, ϕ) = ρ(m,n) (g, ϕ) if λ

(p,q)
h (f, ϕ1) > 0 and

(b) λ(m,n) (g, ϕ)≤ρ(p+m−q,n)h (f ◦ g, ϕ)6ρ(m,n) (g, ϕ) if λ(m,n) (g, ϕ)>0 .

Proof. In view of Lemma 2.1, it follows for all sufficiently large posi-
tive numbers of r that

(1) log[p]M−1h (Mf◦g (r)) ≥
(
λ
(p,q)
h (f, ϕ1)− ε

)
log[q]Mg

(r
2

)
+O(1)

and also for a sequence of positive numbers of r tending to infinity we
get that

(2) log[p]M−1h (Mf◦g (r)) ≥
(
ρ
(p,q)
h (f, ϕ1)− ε

)
log[q]Mg

(r
2

)
+O(1) .

Similarly, we have for all sufficiently large positive numbers of r that

(3) log[p]M−1h (Mf◦g (r)) 6
(
ρ
(p,q)
h (f, ϕ1) + ε

)
log[q]Mg (r) .

Now the following three cases may arise:
Case I. Let q = m. In this case we have from (3) for all sufficiently
large positive numbers of r that

log[p]M−1h (Mf◦g (r)) 6
(
ρ
(p,q)
h (f, ϕ1) + ε

)(
ρ(m,n) (g, ϕ) + ε

)
log[n] ϕ (r)

(4) i.e., lim
r→+∞

log[p]M−1h (Mf◦g (r))

log[n] ϕ (r)
6 ρ

(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) .

Also from (1) and in view of the condition lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all

α > 0, we obtain for a sequence of positive numbers of r tending to
infinity that

log[p]M−1h (Mf◦g (r))

≥
(
λ
(p,q)
h (f, ϕ1)− ε

)(
ρ(m,n) (g, ϕ)− ε

)
log[n] ϕ (r) +O(1)

(5) i.e., lim sup
r→+∞

log[p]M−1h (Mf◦g (r))

log[n] ϕ (r)
≥ λ(p,q)h (f, ϕ1) ρ

(m,n) (g, ϕ) .

Moreover in view of the condition lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0, we

have from (2) for a sequence of positive numbers of r tending to infinity
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that

log[p]M−1h (Mf◦g (r))

≥
(
ρ
(p,q)
h (f, ϕ1)− ε

)(
λ(m,n) (g, ϕ)− ε

)
log[n] ϕ (r) +O(1)

(6) i.e., lim sup
r→+∞

log[p]M−1h (Mf◦g (r))

log[n] ϕ (r)
≥ ρ(p,q)h (f, ϕ1)λ

(m,n) (g, ϕ) .

Therefore from (4) and (5) , we get for λ
(p,q)
h (f, ϕ1) > 0 that

(7)

λ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) ≤ ρ(p,n)h (f ◦ g, ϕ) 6 ρ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) .

Likewise, from (4) and (6) we obtain for λ(m,n) (g, ϕ) > 0 that
(8)

ρ
(p,q)
h (f, ϕ1)λ

(m,n) (g, ϕ) ≤ ρ(p,n)h (f ◦ g, ϕ) 6 ρ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ) .

Also from (7) and (8) one can easily verify that ρ
(p−1,n)
h (f ◦ g, ϕ) =

∞, ρ(p,n−1)h (f ◦ g, ϕ) = 0 and ρ
(p+1,n+1)
h (f ◦ g, ϕ) = 1 and therefore we

obtain that the relative index-pair of f ◦ g is (p, n)-ϕ when q = m and

either λ
(p,q)
h (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0 and thus the first part of the

theorem is established.
Case II. Let q > m. Now we obtain from (3) for all sufficiently large
positive numbers of r that

log[p]M−1h (Mf◦g (r)) 6
(
ρ
(p,q)
h (f, ϕ1) + ε

)
log[q−m] log[m]Mg (r)

i.e., log[p]M−1h (Mf◦g (r)) 6(
ρ
(p,q)
h (f, ϕ1) + ε

)
log[q−m]

[(
ρ(m,n) (g, ϕ) + ε

)
log[n] ϕ (r)

]
i.e., log[p]M−1h (Mf◦g (r)) 6

(
ρ
(p,q)
h (f, ϕ1) + ε

)
log[q+n−m] ϕ (r) +O(1)

(9) i.e., lim
r→+∞

log[p]M−1h (Mf◦g (r))

log[q+n−m] ϕ (r)
6 ρ

(p,q)
h (f, ϕ1) .

Also from (1) and in view of the condition lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all

α > 0, we have for a sequence of positive numbers of r tending to infinity
that

log[p]M−1h (Mf◦g (r)) ≥(
λ
(p,q)
h (f, ϕ1)− ε

)
log[q−m]

[(
ρ(m,n) (g, ϕ)− ε

)
log[n] ϕ (r)

]
+O(1)
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i.e., log[p]M−1h (Mf◦g (r)) ≥
(
λ
(p,q)
h (f, ϕ1)− ε

)
log[q−m+n] ϕ (r) +O(1)

(10) i.e., lim sup
r→+∞

log[p]M−1h (Mf◦g (r))

log[q+n−m] ϕ (r)
≥ λ(p,q)h (f, ϕ1) .

Further in view of the condition lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0, we

get from (2) for a sequence of positive numbers of r tending to infinity
that

log[p]M−1h (Mf◦g (r)) ≥(
ρ
(p,q)
h (f, ϕ1)− ε

)
log[q−m]

[(
λ(m,n) (g, ϕ)− ε

)
log[n] ϕ (r)

]
+O(1)

i.e., log[p]M−1h (Mf◦g (r)) ≥
(
ρ
(p,q)
h (f, ϕ1)− ε

)
log[q+n−m] ϕ (r) +O(1)

(11) i.e., lim sup
r→+∞

log[p]M−1h (Mf◦g (r))

log[q+n−m] ϕ (r)
≥ ρ(p,q)h (f, ϕ1) .

Therefore from (9) and (10) , we get for λ
(p,q)
h (f, ϕ1) > 0 that

(12) λ
(p,q)
h (f, ϕ1) ≤ ρ(p,q+n−m)

h (f ◦ g, ϕ) 6 ρ
(p,q)
h (f, ϕ1) .

Likewise, from (9) and (11) we get for λ(m,n) (g, ϕ) > 0 that

(13) ρ
(p,q+n−m)
h (f ◦ g, ϕ) = ρ

(p,q)
h (f, ϕ1) .

Hence from (12) and (13) one can easily verify that ρ
(p−1,q+n−m)
h (f ◦ g, ϕ)

= ∞, ρ(p,q+n−m−1)h (f ◦ g, ϕ) = 0 and ρ
(p+1,q+n−m+1)
h (f ◦ g, ϕ) = 1 and

therefore we get that the relative index-pair of f ◦ g is (p, q + n−m)-ϕ

when q > m and either λ
(p,q)
h (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0 and thus

the second part of the theorem follows.
Case III. Let q < m. Then we obtain from (3) for all sufficiently large
positive numbers of r that

log[p+m−q]M−1h (Mf◦g (r)) 6 log[m]Mg (r) +O(1)

i.e., log[p+m−q]M−1h (Mf◦g (r)) 6
(
ρ(m,n) (g, ϕ) + ε

)
log[n] ϕ (r) +O(1)

(14) i.e., lim
r→+∞

log[p+m−q]M−1h (Mf◦g (r))

log[n] ϕ (r)
6 ρ(m,n) (g, ϕ) .
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Also from (1) and in view of the condition lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all

α > 0, we have for a sequence of positive numbers of r tending to infinity
that

log[p+m−q]M−1h (Mf◦g (r)) ≥ log[m]Mg

(r
2

)
+O(1)

i.e., log[p+m−q]M−1h (Mf◦g (r)) ≥
(
ρ(m,n) (g, ϕ)− ε

)
log[n] ϕ (r)+O(1)

(15) lim sup
r→+∞

log[p+m−q]M−1h (Mf◦g (r))

log[n] ϕ (r)
≥ ρ(m,n) (g, ϕ) .

Further, we get from (2) for a sequence of positive numbers of r tending
to infinity that

log[p+m−q]M−1h (Mf◦g (r)) ≥ log[m]Mg

(r
2

)
+O(1)

i.e., log[p+m−q]M−1h (Mf◦g (r)) ≥
(
λ(m,n) (g, ϕ)− ε

)
log[n] ϕ (r)+O(1)

(16) lim sup
r→+∞

log[p+m−q]M−1h (Mf◦g (r))

log[n] ϕ (r)
≥ λ(m,n) (g, ϕ) .

Therefore from (14) and (15) , we obtain for λ
(p,q)
h (f, ϕ1) > 0 that

(17) ρ
(p+m−q,n)
h (f ◦ g, ϕ) = ρ(m,n) (g, ϕ) .

Similarly, from (14) and (16) we get for λ(m,n) (g, ϕ) > 0 that

(18) λ(m,n) (g, ϕ) ≤ ρ(p+m−q,n)h (f ◦ g, ϕ) 6 ρ(m,n) (g, ϕ) .

So from (17) and (18) one can easily verify that ρ
(p+m−q−1,n)
h (f ◦ g, ϕ) =

∞,
ρ
(p+m−q,n−1)
h (f ◦ g, ϕ) = 0 and ρ

(p+m−q+1,n+1)
h (f ◦ g, ϕ) = 1 and there-

fore we obtain that the relative index-pair of f ◦ g is (p+m− q, n)-ϕ

when q < m and either λ
(p,q)
h (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0 and thus

the third part of the theorem is established.

In the line of Theorem 3.1 one can easily deduce the conclusion of
the following theorem and so its proof is omitted.

Theorem 3.2. Let f , g, h be any three entire functions such that
the relative index pair of f with respect to h and the index pair of g are
(p, q)-ϕ1 and (m,n)-ϕ respectively. Also let ϕ (r) : [0,+∞) → (0,+∞)

is a nondecreasing unbounded function and satisfies lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
=
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1 for all α > 0. Then

(i) λ
(p,q)
h (f, ϕ1)λ

(m,n) (g, ϕ) ≤ λ(p,n)h (f ◦ g, ϕ)

6 min
{
ρ
(p,q)
h (f, ϕ1)λ

(m,n) (g, ϕ) , λ
(p,q)
h (f, ϕ1) ρ

(m,n) (g, ϕ)
}

if q = m, λ
(p,q)
h (f, ϕ1) > 0 and λ(m,n) (g, ϕ) > 0;

(ii) λ
(p,q+n−m)
h (f ◦ g, ϕ) = λ

(p,q)
h (f, ϕ1)

if q > m, λ
(p,q)
h (f, ϕ1) > 0 and λ(m,n) (g, ϕ) > 0

and

(iii) λ
(p+m−q,n)
h (f ◦ g, ϕ) = λ(m,n) (g, ϕ)

if q < m, λ
(p,q)
h (f, ϕ1) > 0and λ(m,n) (g, ϕ) > 0 .

Corollary 3.3. Let f , g, h be any three entire functions such that
the relative index pair of f with respect to h and the index pair of
g are (p− l,m− l)-ϕ1 and (m,n)-ϕ respectively such that p − l > 0
and m − l > 0. Also let ϕ (r) : [0,+∞) → (0,+∞) is a nondecreasing

unbounded function and satisfies lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0. Then

ρ
(p,n)
h (f ◦ g, ϕ) = ρ(m,n) (g, ϕ) and λ

(p,n)
h (f ◦ g, ϕ) = λ(m,n) (g, ϕ) .

Proof. In view of Definition 1.7 ρ
(p,m)
h (f, ϕ1) = λ

(p,m)
h (f, ϕ1) = 1.

Therefore the conclusion of above corollary immediately follows from
the first part of Theorem 3.1 and Theorem 3.2.

Corollary 3.4. Let f and g be any two entire functions with index
pairs (p, q)-ϕ1 and (m,n)-ϕ respectively. Also let ϕ (r) : [0,+∞) →
(0,+∞) is a nondecreasing unbounded function and satisfies

lim
r→+∞

log[n] ϕ (ar)

log[n] ϕ (r)
= 1

for all α > 0. Then
(i) the index-pair of f◦g is (p, n)-ϕ when q = m and either λ(p,q) (f, ϕ1) >

0 or λ(m,n) (g, ϕ) > 0. Also

(a) λ(p,q) (f, ϕ1) ρ
(m,n) (g, ϕ) ≤ ρ(p,n) (f ◦ g, ϕ) 6

ρ(p,q) (f, ϕ1) ρ
(m,n) (g, ϕ) if λ(p,q) (f, ϕ1) > 0 and
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(b) ρ(p,q) (f, ϕ1)λ
(m,n) (g, ϕ) ≤ ρ(p,n) (f ◦ g, ϕ) 6

ρ(p,q) (f, ϕ1) ρ
(m,n) (g, ϕ) if λ(m,n) (g, ϕ) > 0;

(ii) the index-pair of f ◦ g is (p, q + n−m)-ϕ when q > m and either

λ(p,q) (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0. Also

(a) λ(p,q) (f, ϕ1) ≤ ρ(p,q+n−m) (f ◦ g, ϕ) 6 ρ(p,q) (f, ϕ1) if λ(p,q) (f, ϕ1)>0

and

(b) ρ(p,q+n−m) (f ◦ g, ϕ) = ρ(p,q) (f, ϕ1) if λ(m,n) (g, ϕ) > 0;

(iii) the index-pair of f ◦ g is (p+m− q, n)-ϕ when q < m and either

λ(p,q) (f, ϕ1) > 0 or λ(m,n) (g, ϕ) > 0. Also

(a) ρ(p+m−q,n) (f ◦ g, ϕ) = ρ(m,n) (g, ϕ) if λ(p,q) (f, ϕ1) > 0 and

(b) λ(m,n) (g, ϕ) ≤ ρ(p+m−q,n) (f ◦ g, ϕ) 6 ρ(m,n) (g, ϕ) if λ(m,n) (g, ϕ)>0 .

Corollary 3.5. Let f and g be any two entire functions with index
pairs (p, q)-ϕ1 and (m,n)-ϕ respectively. Also let ϕ (r) : [0,+∞) →
(0,+∞) is a nondecreasing unbounded function and satisfies

lim
r→+∞

log[n] ϕ (ar)

log[n] ϕ (r)
= 1

for all α > 0. Then

(i) λ(p,q) (f, ϕ1)λ
(m,n) (g, ϕ) ≤ λ(p,n) (f ◦ g, ϕ)

6 min
{
ρ(p,q) (f, ϕ1)λ

(m,n) (g, ϕ) , λ(p,q) (f, ϕ1) ρ
(m,n) (g, ϕ)

}
if q = m, λ(p,q) (f, ϕ1) > 0 and λ(m,n) (g, ϕ) > 0;

(ii) λ(p,q+n−m) (f ◦ g, ϕ) = λ(p,q) (f, ϕ1)

if q > m, λ(p,q) (f, ϕ1) > 0 and λ(m,n) (g, ϕ) > 0

and

(iii) λ(p+m−q,n) (f ◦ g, ϕ) = λ(m,n) (g, ϕ)

if q < m, λ(p,q) (f, ϕ1) > 0 and λ(m,n) (g, ϕ) > 0 .

Reasoning similarly as in the proofs of the Theorem 3.1 and Theorem
3.2, one can easily deduce the conclusions of the above two corollaries,
and so their proofs are omitted.



256 Tanmay Biswas

Corollary 3.6. Let f , g, h be any three entire functions such that
the relative index pair of f with respect to h and the index pair of
g are (p− 1,m− 1)-ϕ1 and (m,n)-ϕ respectively such that p > 1 and
m > 1. Also let ϕ (r) : [0,+∞)→ (0,+∞) is a nondecreasing unbounded

function and satisfies lim
r→+∞

log[n−1] ϕ(ar)

log[n−1] ϕ(r)
= 1 for all α > 0. Then

λ
(p−1,q−1)
h (f, ϕ1)σ

(m,n) (g, ϕ) ≤ σ(p,n)h (f ◦ g, ϕ)

≤ ρ(p−1,q−1)h (f, ϕ1)σ
(m,n) (g, ϕ)

and

λ(p−1,q−1) (f, ϕ1)σ
(m,n) (g, ϕ) ≤ σ(p,n) (f ◦ g, ϕ)

≤ ρ(p−1,q−1) (f, ϕ1)σ
(m,n) (g, ϕ) .

Proof. In view of Lemma 2.1 and Corollary 3.3, we get that

σ
(p,n)
h (f ◦ g, ϕ) = lim sup

r→+∞

log[p−1]M−1h (Mf◦g (r))(
log[n−1] ϕ (r)

)ρ(p,n)
h (f◦g,ϕ)

i.e., σ
(p,n)
h (f ◦ g, ϕ) ≤

lim sup
r→+∞

log[p−1]M−1h (Mf (Mg (r)))

log[m−1]Mg (r)
· lim sup
r→+∞

log[m−1]Mg (r)(
log[n−1] ϕ (r)

)ρ(m,n)(g,ϕ)

(19) i.e., σ
(p,n)
h (f ◦ g, ϕ) ≤ ρ(p−1,q−1)h (f, ϕ1)σ

(m,n) (g, ϕ) .

Similarly

σ
(p,n)
h (f ◦ g, ϕ) = lim sup

r→+∞

log[p−1]M−1h (Mf◦g (r))(
log[n−1] ϕ (r)

)ρ(p,n)
h (f◦g,ϕ)

i.e., σ
(p,n)
h (f ◦ g, ϕ) ≥

lim inf
r→+∞

log[p−1]M−1h
(
Mf

(
1
8Mg

(
r
2

)))
log[m−1]Mg

(
r
2

)
+O(1)

·lim sup
r→+∞

log[m−1]Mg

(
r
2

)
+O(1)(

log[n−1] ϕ (r)
)ρ(m,n)(g,ϕ)

(20) i.e., σ
(p,n)
h (f ◦ g, ϕ) ≥ λ(p−1,q−1)h (f, ϕ1)σ

(m,n) (g, ϕ) .
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Hence the first part of corollary follows from (19) and (20) .

σ
(p,n)
h (f ◦ g, ϕ) = lim inf

r→+∞

log[p−1]M−1h (Mf◦g (r))(
log[n−1] ϕ (r)

)ρ(p,n)
h (f◦g,ϕ)

i.e., σ
(p,n)
h (f ◦ g, ϕ) ≥

lim inf
r→+∞

log[p−1]M−1h
(
Mf

(
1
8Mg

(
r
2

)))
log[m−1][m−1]Mg

(
r
2

)
+O(1)

· lim inf
r→+∞

log[m−1]Mg

(
r
2

)
+O(1)(

log[n−1] ϕ (r)
)ρ(m,n)(g,ϕ)

Again

(21) i.e., σ
(p,n)
h (f ◦ g, ϕ) ≥ λ(p−1,q−1)h (f, ϕ1)σ

(m,n) (g, ϕ) .

Also

σ
(p,n)
h (f ◦ g, ϕ) = lim inf

r→+∞

log[p−1]M−1h (Mf◦g (r))(
log[n−1] ϕ (r)

)ρ(p,n)
h (f◦g,ϕ)

i.e., σ
(p,n)
h (f ◦ g, ϕ) ≤

lim sup
r→+∞

log[p−1]M−1h (Mf (Mg (r)))

log[m−1]Mg (r)
·lim inf
r→+∞

log[m−1]Mg (r)(
log[n−1] ϕ (r)

)ρ(m,n)(g,ϕ)

(22) i.e., σ
(p,n)
h (f ◦ g, ϕ) ≤ ρ(p−1,q−1)h (f, ϕ1)σ

(m,n) (g, ϕ) .

Therefore the second part of corollary follows from (21) and (22) .
Thus the corollary follows.

Corollary 3.7. Let f , g, h be any three entire functions such that
the relative index pair of f with respect to h and the index pair of
g are (p− 1,m− 1)-ϕ1 and (m,n)-ϕ respectively such that p > 1 and
m > 1. Also let ϕ (r) : [0,+∞)→ (0,+∞) is a nondecreasing unbounded

function and satisfies lim
r→+∞

log[n−1] ϕ(ar)

log[n−1] ϕ(r)
= 1 for all α > 0. Then

λ
(p−1,q−1)
h (f, ϕ1) τ

(m,n) (g, ϕ) ≤ τ (p,n)h (f ◦ g, ϕ)

≤ ρ(p−1,q−1)h (f, ϕ1) τ
(m,n) (g, ϕ) .

and

λ
(p−1,q−1)
h (f, ϕ1) τ

(m,n) (g, ϕ) ≤ τ (p,n)h (f ◦ g, ϕ)

≤ ρ(p−1,q−1)h (f, ϕ1) τ
(m,n) (g, ϕ) .
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Reasoning similarly as in the proof of the Corollary 3.6 one can easily
deduce the conclusion of Corollary 3.7, and so its proof is omitted.

Theorem 3.8. Let f , g, h and k be any four entire functions with
index pairs (p, q)-ϕ1, (m,n)-ϕ, (a, b)-ϕ1 and (c, d)-ϕ1 respectively. Also
let ϕ (r) : [0,+∞) → (0,+∞) is a nondecreasing unbounded function

and satisfies the condition (i) lim
r→+∞

log[q] r

log[q] ϕ(r)
= α where α > 0, (ii)

lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p+m−q, q ≥
n) holds and λ(p,q) (f, ϕ1) > 0, 0 < λ

(b,n)
h (f ◦ g, ϕ) ≤ ρ

(b,n)
h (f ◦ g, ϕ) <

∞ then

λ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

≤ lim inf
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

))
≤ min

{
λ
(b,n)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

,
ρ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

}
≤

max

{
λ
(b,n)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

,
ρ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

}
≤

lim sup
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤ ρ
(b,n)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

.

and
(ii) If q > m, a = c = p, λ(p,q) (f, ϕ1) > 0 and 0 < λ

(b,q+n−m)
h (f ◦ g, ϕ) ≤

ρ
(b,q+n−m)
h (f ◦ g, ϕ) <∞, then

λ
(b,q+n−m)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

≤ lim inf
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[m−n] r

)) ≤
min

{
λ
(b,q+n−m)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

,
ρ
(b,q+n−m)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

}
≤

max

{
λ
(b,q+n−m)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

,
ρ
(b,q+n−m)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

}
≤

lim sup
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[m−n] r

)) ≤ ρ
(b,q+n−m)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

.
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Proof. Let either (q = m, a = c = p, q ≥ n) or (q < m, c = p,

a = p+m−q, q ≥ n) hold and λ(p,q) (f, ϕ1) > 0. Then in view of Theorem
3.4, the index-pair of f ◦g is (p, n)-ϕ or (p+m− q, n)-ϕ respectively and

therefore by Definition 1.6, ρ
(b,n)
h (f ◦ g, ϕ)

(
respectively λ

(b,n)
h (f ◦ g, ϕ)

)
exist. Since the index pairs of f and k are (p, q)-ϕ1 and (c, d)-ϕ1 respec-

tively, then in view of c = p and lim
r→+∞

log[q] r

log[q] ϕ(r)
= α where α > 0, we get

that 0 < ρ
(d,q)
k (f, ϕ) < ∞. Therefore the relative index-pair of f with

respect to k is (d, q)-ϕ.

Now from the definition of ρ
(d,q)
k (f, ϕ) and λ

(b,n)
h (f ◦ g, ϕ) , we have

for arbitrary positive ε and for all sufficiently large positive numbers of
r that

(23) log[b]M−1h (Mf◦g (r)) >
(
λ
(b,n)
h (f ◦ g, ϕ)− ε

)
log[n] ϕ (r)

and

(24) log[d]M−1k

(
Mf

(
exp[q−n] r

))
≤
(
ρ
(d,q)
k (f, ϕ) + ε

)
log[n] ϕ (r) .

Now from (23) and (24) , it follows for all sufficiently large positive num-
bers of r that

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) >

(
λ
(b,n)
h (f ◦ g, ϕ)− ε

)
log[n] ϕ (r)(

ρ
(d,q)
k (f, ϕ) + ε

)
log[n] ϕ (r)

.

As ε (> 0) is arbitrary, we obtain that

(25) lim inf
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) >
λ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

.

Again we get for a sequence of positive numbers of r tending to infinity
that

(26) log[b]M−1h (Mf◦g (r)) ≤
(
λ
(b,n)
h (f ◦ g, ϕ) + ε

)
log[n] ϕ (r)

and for all sufficiently large positive numbers of r that

(27) log[d]M−1k

(
Mf

(
exp[q−n] r

))
>
(
λ
(d,q)
k (f, ϕ)− ε

)
log[n] ϕ (r) .

Combining (26) and (27) , we get for a sequence of positive numbers of
r tending to infinity that

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤
(
λ
(b,n)
h (f ◦ g, ϕ) + ε

)
log[n] ϕ (r)(

λ
(d,q)
k (f, ϕ)− ε

)
log[n] ϕ (r)

.
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Since ε (> 0) is arbitrary, it follows that

(28) lim inf
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤ λ
(b,n)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

.

Also for a sequence of positive numbers of r tending to infinity that

(29) log[d]M−1k

(
Mf

(
exp[q−n] r

))
≤
(
λ
(d,q)
k (f, ϕ) + ε

)
log[n] ϕ (r) .

Now from (23) and (29) , we obtain for a sequence of positive numbers
of r tending to infinity that

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≥
(
λ
(b,n)
h (f ◦ g, ϕ)− ε

)
log[n] ϕ (r)(

λ
(d,q)
k (f, ϕ) + ε

)
log[n] ϕ (r)

.

As ε (> 0) is arbitrary, we get from above that

(30) lim sup
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≥ λ
(b,n)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

.

Also we obtain for all sufficiently large positive numbers of r that

(31) log[b]M−1h (Mf◦g (r)) ≤
(
ρ
(b,n)
h (f ◦ g, ϕ) + ε

)
log[n] ϕ (r) .

Now it follows from (27) and (31) for all sufficiently large positive num-
bers of r that

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤
(
ρ
(b,n)
h (f ◦ g, ϕ) + ε

)
log[n] ϕ (r)(

λ
(d,q)
k (f, ϕ)− ε

)
log[n] ϕ (r)

.

Since ε (> 0) is arbitrary, we obtain that

(32) lim sup
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤ ρ
(b,n)
h (f ◦ g, ϕ)

λ
(d,q)
k (f, ϕ)

.

Further from the definition of ρ
(d,q)
k (f) , we get for a sequence of

positive numbers of r tending to infinity that

(33) log[d]M−1k

(
Mf

(
exp[q−n] r

))
>
(
ρ
(d,q)
k (f, ϕ)− ε

)
log[n] ϕ (r) .
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Now from (31) and (33) , it follows for a sequence of positive numbers
of r tending to infinity that

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤
(
ρ
(b,n)
h (f ◦ g, ϕ) + ε

)
log[n] ϕ (r)(

ρ
(d,q)
k (f, ϕ)− ε

)
log[n] ϕ (r)

.

As ε (> 0) is arbitrary, we obtain that

(34) lim inf
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) ≤ ρ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

.

Again we obtain for a sequence of positive numbers of r tending to
infinity that

(35) log[b]M−1h (Mf◦g (r)) >
(
ρ
(b,n)
h (f ◦ g, ϕ)− ε

)
log[n] ϕ (r) .

So combining (24) and (35) , we get for a sequence of positive numbers
of r tending to infinity that

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) >

(
ρ
(b,n)
h (f ◦ g, ϕ)− ε

)
log[n] ϕ (r)(

ρ
(d,q)
k (f, ϕ) + ε

)
log[n] ϕ (r)

.

Since ε (> 0) is arbitrary, it follows that

(36) lim sup
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k
(
Mf

(
exp[q−n] r

)) >
ρ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,q)
k (f, ϕ)

.

Thus the first part of the theorem follows from (25) , (28) , (30), (32),
(34) and (36) .
Analogously, the second part of the theorem can be derived in a like
manner.

The following theorem can be proved in the line of Theorem 3.8 and
so its proof is omitted.

Theorem 3.9. Let f , g, h and k be any four entire functions with
index pairs (p, q)-ϕ1, (m,n)-ϕ, (a, b)-ϕ1 and (c, d)-ϕ1 respectively. Also
let ϕ (r) : [0,+∞) → (0,+∞) is a nondecreasing unbounded function

and satisfies the condition (i) lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0.

(i) If either (q = m = c, a = p) or (q < m = c, a = p+m− q) holds,
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λ(m,n) (g, ϕ) > 0, 0 < λ
(b,n)
h (f ◦ g, ϕ) ≤ ρ

(b,n)
h (f ◦ g, ϕ) < ∞, then

λ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,n)
k (g, ϕ)

≤ lim inf
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k (Mg (r))
≤

min

{
λ
(b,n)
h (f ◦ g, ϕ)

λ
(d,n)
k (g, ϕ)

,
ρ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,n)
k (g, ϕ)

}
≤

max

{
λ
(b,n)
h (f ◦ g, ϕ)

λ
(d,n)
k (g, ϕ)

,
ρ
(b,n)
h (f ◦ g, ϕ)

ρ
(d,n)
k (g, ϕ)

}
≤

lim sup
r→+∞

log[b]M−1h (Mf◦g (r))

log[d]M−1k (Mg (r))
≤
ρ
(b,n)
h (f ◦ g, ϕ)

λ
(d,n)
k (g, ϕ)

.

and
(ii) If q > m = c, a = p, λ(m,n) (g, ϕ) > 0 and 0 < λ

(b,q+n−m)
h (f ◦ g, ϕ) ≤

ρ
(b,q+n−m)
h (f ◦ g, ϕ) <∞, then

λ
(b,q+n−m)
h (f ◦ g, ϕ)

ρ
(d,n)
k (g, ϕ)

≤ lim inf
r→+∞

log[b]M−1h
(
Mf◦g

(
exp[q−m] r

))
log[d]M−1k (Mg (r))

≤

min

{
λ
(b,q+n−m)
h (f ◦ g, ϕ)

λ
(d,n)
k (g, ϕ)

,
ρ
(b,q+n−m)
h (f ◦ g, ϕ)

ρ
(d,n)
k (g, ϕ)

}
≤

max

{
λ
(b,q+n−m)
h (f ◦ g)

λ
(d,n)
k (g, ϕ)

,
ρ
(b,q+n−m)
h (f ◦ g, ϕ)

ρ
(d,n)
k (g, ϕ)

}
≤

lim sup
r→+∞

log[b]M−1h
(
Mf◦g

(
exp[q−m] r

))
log[d]M−1k (Mg (r))

≤
ρ
(b,q+n−m)
h (f ◦ g, ϕ)

λ
(d,n)
k (g, ϕ)

.

The proof of the following theorem can be carried out as of the The-
orem 3.8, therefore we omit the details.

Remark 3.10. The same results Theorem 3.8 and Theorem 3.9 in
terms of maximum terms of entire functions can also be deduced with
the help of Definition 1.10.

Theorem 3.11. Let f , g, h and k be any four entire functions with
index pairs (p, q)-ϕ1, (m,n)-ϕ, (a, b)-ϕ1 and (c, d)-ϕ1 respectively. Also
let ϕ (r) : [0,+∞) → (0,+∞) is a nondecreasing unbounded function

and satisfies the condition (i) lim
r→+∞

log[q] r

log[q] ϕ(r)
= α where α > 0, (ii)
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lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0.

(i) If either (q = m, a = c = p, q ≥ n) or (q < m, c = p, a = p+m− q,
q ≥ n) holds, 0 < σ

(b,n)
h (f ◦ g, ϕ) ≤ σ(b,n)h (f ◦ g, ϕ) <∞, 0 < σ

(d,q)
k (f, ϕ)

≤ σ
(d,q)
k (f, ϕ) <∞ and ρ

(b,n)
h (f ◦ g, ϕ) = ρ

(d,q)
k (f, ϕ) , then

σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

≤ lim inf
r→+∞

log[b−1]M−1h (Mf◦g (r))

log[d−1]M−1k
(
Mf

(
exp[q−n] r

)) ≤
min

{
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

,
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

}
≤

max

{
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

,
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

}
≤

lim sup
r→+∞

log[b−1]M−1h (Mf◦g (r))

log[d−1]M−1k
(
Mf

(
exp[q−n] r

)) ≤ σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

.

and
(ii) If q > m, a = c = p, 0 < σ

(b,q+n−m)
h (f ◦ g, ϕ) ≤ σ(b,q+n−m)

h (f ◦ g, ϕ)

< ∞, 0 < σ
(d,q)
k (f, ϕ) ≤ σ

(d,q)
k (f, ϕ) < ∞ and ρ

(b,q+n−m)
h (f ◦ g, ϕ) =

ρ
(d,q)
k (f, ϕ) , then

σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

≤ lim inf
r→+∞

log[b−1]M−1h (Mf◦g (r))

log[d−1]M−1k
(
Mf

(
exp[m−n] r

)) ≤
min

{
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

,
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

}
≤

max

{
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

,
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

}
≤

lim sup
r→+∞

log[b−1]M−1h (Mf◦g (r))

log[d−1]M−1k
(
Mf

(
exp[m−n] r

)) ≤ σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,q)
k (f, ϕ)

.

Remark 3.12. In Theorem 3.11, if we will replace the conditions

“0<σ
(b,n)
h (f ◦ g, ϕ) ≤ σ(b,n)h (f ◦ g, ϕ) <∞, 0<σ

(d,q)
k (f, ϕ) ≤ σ(d,q)k (f, ϕ)

< ∞ and ρ
(b,n)
h (f ◦ g, ϕ) = ρ

(d,q)
k (f, ϕ)” and “0 < σ

(b,q+n−m)
h (f ◦ g, ϕ)

≤ σ
(b,q+n−m)
h (f ◦ g, ϕ) < ∞, 0 < σ

(d,q)
k (f, ϕ) ≤ σ

(d,q)
k (f, ϕ) < ∞ and

ρ
(b,q+n−m)
h (f ◦ g, ϕ)=ρ

(d,q)
k (f, ϕ)” by “0<τ

(b,n)
h (f ◦ g, ϕ)≤τ (b,n)h (f ◦ g, ϕ)
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<∞, 0<τ
(d,q)
k (f, ϕ)≤τ (d,q)k (f, ϕ)<∞ and λ

(b,n)
h (f ◦ g, ϕ) = λ

(d,q)
k (f, ϕ)”

and “0<τ
(b,q+n−m)
h (f ◦ g, ϕ)≤τ (b,q+n−m)

h (f ◦ g, ϕ) <∞, 0 < τ
(d,q)
k (f, ϕ)

≤ τ (d,q)k (f, ϕ) <∞ and λ
(b,q+n−m)
h (f ◦ g, ϕ) = λ

(d,q)
k (f, ϕ)” respectively,

then the conclusion of Theorem 3.11 remains valid with τ
(b,n)
h (f ◦ g, ϕ),

τ
(b,n)
h (f ◦ g, ϕ), τ

(d,q)
k (f, ϕ), τ

(d,q)
k (f, ϕ), τ

(b,q+n−m)
h (f ◦ g, ϕ), τ

(b,q+n−m)
h

(f ◦ g, ϕ), τ
(d,q)
k (f, ϕ) and τ

(d,q)
k (f, ϕ) replaced by σ

(b,n)
h (f ◦ g, ϕ), σ

(b,n)
h

(f ◦g, ϕ), σ
(d,q)
k (f, ϕ), σ

(d,q)
k (f, ϕ), σ

(b,q+n−m)
h (f ◦g, ϕ), σ

(b,q+n−m)
h (f ◦g, ϕ),

σ
(d,q)
k (f, ϕ) and σ

(d,q)
k (f, ϕ) respectively.

Remark 3.13. In Theorem 3.11, if we will replace the conditions

“0 < σ
(d,q)
k (f, ϕ) ≤ σ

(d,q)
k (f, ϕ) < ∞ and ρ

(b,n)
h (f ◦ g, ϕ) = ρ

(d,q)
k (f, ϕ)”

and “0 < σ
(d,q)
k (f, ϕ) ≤ σ

(d,q)
k (f, ϕ) < ∞ and ρ

(b,q+n−m)
h (f ◦ g, ϕ) =

ρ
(d,q)
k (f, ϕ)” by “0 < τ

(d,q)
k (f, ϕ) ≤ τ

(d,q)
k (f, ϕ) < ∞ and ρ

(b,n)
h (f ◦ g, ϕ)

= λ
(d,q)
k (f, ϕ)” and “0 < τ

(d,q)
k (f, ϕ) ≤ τ

(d,q)
k (f, ϕ) < ∞ and ρ

(b,q+n−m)
h

(f ◦ g, ϕ)=λ
(d,q)
k (f, ϕ)” respectively, then the conclusion of Theorem 3.11

remains valid with τ
(d,q)
k (f, ϕ) , τ

(d,q)
k (f, ϕ), τ

(d,q)
k (f, ϕ) and τ

(d,q)
k (f, ϕ)

replaced by σ
(d,q)
k (f, ϕ) , σ

(d,q)
k (f, ϕ) , σ

(d,q)
k (f, ϕ) and σ

(d,q)
k (f, ϕ) respec-

tively.

Remark 3.14. In Theorem 3.11, if we will replace the conditions

“0<σ
(b,n)
h (f ◦ g, ϕ)≤σ(b,n)h (f ◦ g, ϕ)<∞ and ρ

(b,n)
h (f ◦ g, ϕ)=ρ

(d,q)
k (f, ϕ)”

and “0< σ
(b,q+n−m)
h (f ◦ g, ϕ)≤ σ(b,q+n−m)

h (f ◦ g, ϕ)<∞ and ρ
(b,q+n−m)
h

(f ◦ g, ϕ) = ρ
(d,q)
k (f, ϕ)” by “0 < τ

(b,n)
h (f ◦ g, ϕ) ≤ τ

(b,n)
h (f ◦ g, ϕ) <

∞ and λ
(b,n)
h (f ◦ g, ϕ) = ρ

(d,q)
k (f, ϕ)” and “0 < τ

(b,q+n−m)
h (f ◦ g, ϕ)

≤ τ
(b,q+n−m)
h (f ◦ g, ϕ) < ∞ and λ

(b,q+n−m)
h (f ◦ g, ϕ) = ρ

(d,q)
k (f, ϕ)”

respectively, then the conclusion of Theorem 3.11 remains valid with

τ
(b,n)
h (f ◦g, ϕ), τ

(b,n)
h (f ◦g, ϕ), τ

(b,q+n−m)
h (f ◦g, ϕ) and τ

(b,q+n−m)
h (f ◦ g, ϕ)

replaced by σ
(b,n)
h (f ◦g, ϕ) , σ

(b,n)
h (f ◦ g, ϕ) , σ

(b,q+n−m)
h (f ◦ g, ϕ) and

σ
(b,q+n−m)
h (f ◦ g, ϕ) respectively.

Analogously one may formulate the following theorem without its
proof.

Theorem 3.15. Let f , g, h and k be any four entire functions with
index pairs (p, q)-ϕ1, (m,n)-ϕ, (a, b)-ϕ1 and (c, d)-ϕ1 respectively. Also
let ϕ (r) : [0,+∞) → (0,+∞) is a nondecreasing unbounded function

and satisfies the condition (i) lim
r→+∞

log[n] ϕ(ar)

log[n] ϕ(r)
= 1 for all α > 0.
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(i) If either (q = m = c, a = p) or (q < m = c, a = p+m− q) holds,

0 < σ
(b,n)
h (f ◦ g, ϕ)≤ σ(b,n)h (f ◦ g, ϕ)<∞, 0 < σ

(d,n)
k (g, ϕ)≤ σ(d,n)k (g, ϕ)

<∞ and ρ
(b,n)
h (f ◦ g, ϕ) = ρ

(d,n)
k (g, ϕ) then

σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

≤ lim inf
r→+∞

log[b−1]M−1h (Mf◦g (r))

log[d−1]M−1k (Mg (r))
≤

min

{
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

,
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

}
≤

max

{
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

,
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

}
≤

lim sup
r→+∞

log[b−1]M−1h (Mf◦g (r))

log[d−1]M−1k (Mg (r))
≤
σ
(b,n)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

.

and
(ii) If q > m = c, a = p, 0 < σ

(b,q+n−m)
h (f ◦ g, ϕ) ≤ σ(b,q+n−m)

h (f ◦ g, ϕ)

< ∞, 0 < σ
(d,n)
k (g, ϕ) ≤ σ

(d,n)
k (g, ϕ) < ∞ and ρ

(b,q+n−m)
h (f ◦ g, ϕ) =

ρ
(d,n)
k (g, ϕ) then

σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

≤ lim inf
r→+∞

log[b−1]M−1h
(
Mf◦g

(
exp[q−m] r

))
log[d−1]M−1k (Mg (r))

≤

min

{
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

,
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

}
≤

max

{
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

,
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

}
≤

lim sup
r→+∞

log[b−1]M−1h
(
Mf◦g

(
exp[q−m] r

))
log[d−1]M−1k (Mg (r))

≤
σ
(b,q+n−m)
h (f ◦ g, ϕ)

σ
(d,n)
k (g, ϕ)

.

Remark 3.16. In Theorem 3.15, if we will replace the conditions “0

< σ
(b,n)
h (f ◦ g, ϕ) ≤ σ

(b,n)
h (f ◦ g, ϕ) <∞, 0 < σ

(d,n)
k (g, ϕ) ≤ σ

(d,n)
k (g, ϕ)

< ∞ and ρ
(b,n)
h (f ◦ g, ϕ) = ρ

(d,n)
k (g, ϕ)” and “0 < σ

(b,q+n−m)
h (f ◦ g, ϕ)

≤ σ
(b,q+n−m)
h (f ◦ g, ϕ) < ∞, 0 < σ

(d,n)
k (g, ϕ) ≤ σ

(d,n)
k (g, ϕ) < ∞ and

ρ
(b,q+n−m)
h (f ◦ g, ϕ) = ρ

(d,n)
k (g, ϕ)” by “0<τ

(b,n)
h (f ◦ g, ϕ)≤τ (b,n)h (f ◦ g, ϕ)

<∞, 0 < τ
(d,n)
k (g, ϕ)≤τ (d,n)k (g, ϕ)<∞ and λ

(b,n)
h (f ◦ g, ϕ)=λ

(d,n)
k (g, ϕ)”
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and “0< τ
(b,q+n−m)
h (f ◦ g, ϕ)≤ τ (b,q+n−m)

h (f ◦ g, ϕ)<∞, 0< τ
(d,n)
k (g, ϕ)

≤ τ (d,n)k (g, ϕ) <∞ and λ
(b,q+n−m)
h (f ◦ g, ϕ) = λ

(d,n)
k (g, ϕ)” respectively,

then the conclusion of Theorem 3.15 remains valid with τ
(b,n)
h (f ◦ g, ϕ) ,

τ
(b,n)
h (f ◦ g, ϕ) , τ

(d,n)
k (g, ϕ) , τ

(d,n)
k (g, ϕ) , τ

(b,q+n−m)
h (f ◦ g, ϕ), τ

(b,q+n−m)
h

(f ◦ g, ϕ), τ
(d,n)
k (g, ϕ) and τ

(d,n)
k (g, ϕ) replaced by σ

(b,n)
h (f ◦ g, ϕ) , σ

(b,n)
h

(f ◦ g, ϕ), σ
(d,n)
k (g, ϕ), σ

(d,n)
k (g, ϕ), σ

(b,q+n−m)
h (f ◦ g, ϕ), σ

(b,q+n−m)
h

(f ◦ g, ϕ), σ
(d,n)
k (g, ϕ) and σ

(d,n)
k (g, ϕ) respectively.

Remark 3.17. In Theorem 3.15, if we will replace the conditions

“0 < σ
(d,n)
k (g, ϕ) ≤ σ

(d,n)
k (g, ϕ) < ∞ and ρ

(b,n)
h (f ◦ g, ϕ) = ρ

(d,n)
k (g, ϕ)”

and “0 < σ
(d,n)
k (g, ϕ) ≤ σ

(d,n)
k (g, ϕ) < ∞ and ρ

(b,q+n−m)
h (f ◦ g, ϕ) =

ρ
(d,n)
k (g, ϕ)” by “0 < τ

(d,n)
k (g, ϕ) ≤ τ

(d,n)
k (g, ϕ) <∞ and ρ

(b,n)
h (f ◦ g, ϕ)

= λ
(d,n)
k (g, ϕ)” and “0 < τ

(d,n)
k (g, ϕ) ≤ τ

(d,n)
k (g, ϕ) < ∞ and ρ

(b,q+n−m)
h

(f ◦ g, ϕ)=λ
(d,n)
k (g, ϕ)” respectively, then the conclusion of Theorem 3.15

remains valid with τ
(d,n)
k (g, ϕ) , τ

(d,n)
k (g, ϕ) , τ

(d,n)
k (g, ϕ) and τ

(d,n)
k (g, ϕ)

replaced by σ
(d,n)
k (g, ϕ) , σ

(d,n)
k (g, ϕ) , σ

(d,n)
k (g, ϕ) and σ

(d,n)
k (g, ϕ) re-

spectively.

Remark 3.18. In Theorem 3.15, if we will replace the conditions

“0 < σ
(b,n)
h (f ◦ g, ϕ)≤ σ(b,n)h (f ◦ g, ϕ)<∞, ρ

(b,n)
h (f ◦ g, ϕ)=ρ

(d,n)
k (g, ϕ)”

and “0 < σ
(b,q+n−m)
h (f ◦ g, ϕ) ≤ σ

(b,q+n−m)
h (f ◦ g, ϕ) < ∞, ρ

(b,q+n−m)
h

(f ◦ g, ϕ) = ρ
(d,n)
k (g, ϕ)” by “0 < τ

(b,n)
h (f ◦ g, ϕ) ≤ τ (b,n)h (f ◦ g, ϕ) <∞,

λ
(b,n)
h (f ◦ g, ϕ) = ρ

(d,n)
k (g, ϕ)” and “0< τ

(b,q+n−m)
h (f ◦ g, ϕ)≤ τ (b,q+n−m)

h

(f ◦ g, ϕ) < ∞, λ
(b,q+n−m)
h (f ◦ g, ϕ) = ρ

(d,n)
k (g, ϕ)” respectively, then

the conclusion of Theorem 3.15 remains valid with τ
(b,n)
h (f ◦ g, ϕ) ,

τ
(b,n)
h (f ◦ g, ϕ) , τ

(b,q+n−m)
h (f ◦ g, ϕ) and τ

(b,q+n−m)
h (f ◦ g, ϕ) replaced

by σ
(b,n)
h (f ◦ g, ϕ) , σ

(b,n)
h (f ◦ g, ϕ) , σ

(b,q+n−m)
h (f ◦ g, ϕ) and σ

(b,q+n−m)
h

(f ◦ g, ϕ) respectively.

Theorem 3.19. Let f , g and h be any three entire functions such

that ρ
(p,q)
k (g, ϕ) <∞ and λ

(p,q)
h (f ◦ g, ϕ) =∞. Then

lim
r→∞

log[p]M−1h (Mf◦g (r))

log[p]M−1k (Mg (r))
=∞ .
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Proof. If possible, let there exists a constant β such that for a se-
quence of values of r tending to infinity we have

(37) log[p]M−1h (Mf◦g (r)) ≤ β · log[p]M−1k (Mg (r)) .

Again from the definition of ρ
(p,q)
k (g, ϕ) , it follows for all sufficiently

large values of r that

(38) log[p]M−1k (Mg (r)) ≤
(
ρ
(p,q)
k (g, ϕ) + ε

)
log[q] ϕ (r) .

Now combining (37) and (38) we obtain for a sequence of values of r
tending to infinity that

log[p]M−1h (Mf◦g (r)) ≤ β ·
(
ρ
(p,q)
k (g, ϕ) + ε

)
log[q] ϕ (r)

i.e., λ
(p,q)
h (f ◦ g, ϕ) ≤ β ·

(
ρ
(p,q)
k (g, ϕ) + ε

)
,

which contradicts the condition λ
(p,q)
h (f ◦ g, ϕ) = ∞. So for all suffi-

ciently large values of r we get that

log[p]M−1h (Mf◦g (r)) ≥ β · log[p]M−1k (Mg (r)) ,

from which the theorem follows.

Remark 3.20. Theorem 3.19 is also valid with “limit superior” in-

stead of “limit” if λ
(p,q)
h (f ◦ g, ϕ) =∞ is replaced by ρ

(p,q)
h (f ◦ g, ϕ) =∞

and the other conditions remain the same.

Corollary 3.21. Under the assumptions of Theorem 3.19 and Re-
mark 3.20,

lim
r→∞

log[p−1]M−1h (Mf◦g (r))

log[m−1]M−1k (Mg (r))
=∞ and lim

r→∞

log[p−1]M−1h (Mf◦g (r))

log[m−1]M−1k (Mg (r))
=∞

respectively.

Proof. By Theorem 3.19 we obtain for all sufficiently large values of
r and for K > 1,

log[p]M−1h (Mf◦g (r)) > K · log[m]M−1k (Mg (r))

i.e., log[p−1]M−1h (Mf◦g (r)) >
{

log[m−1]M−1k (Mg (r))
}K

,

from which the first part of the corollary follows.
Similarly using Remark 3.20, we obtain the second part of the corol-

lary.
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