DOI QR코드

DOI QR Code

Relationship between the Estimated Glomerular Filtration Rate and the Urine Microalbumin/Creatinine Ratio and Ferritin in Korean Adults

한국 성인에서 사구체여과율 및 요 중 미세알부빈/크레아티닌 비율과 페리틴의 관련성

  • Yoon, Hyun (Department of Clinical Laboratory Science, Wonkwang Health Science University) ;
  • Lee, Jun Ho (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 윤현 (원광보건대학교 임상병리과) ;
  • 이준호 (원광보건대학교 임상병리과)
  • Received : 2019.03.23
  • Accepted : 2019.04.15
  • Published : 2019.06.30

Abstract

This study examined the relationship between the estimated glomerular filtration rate (eGFR) and urine microalbumin/creatinine ratio (uACR) with ferritin in Korean adults. This study included 4,948 adults aged ${\geq}20years$ from the 2012 Korea National Health and Nutrition Examination Survey (KNHANES) data. A covariance test adjusted for covariates was performed for the ferritin levels in relation to the decreased eGFR (eGFR<$60ml/min/1.73m^2$) and elevated uACR ($uACR{\geq}30mg/g$). Several key findings were made in the present study. First, after adjusting for the related variables, the ferritin level was higher in the decreased eGFR group [$103.04{\pm}6.59mL/min/1.73m^2$; 95% confidence interval (CI), 90.12~115.96] than in the normal eGFR group ($84.87{\pm}1.16mL/min/1.73m^2$; 95% CI, 82.59~87.14; P=0.007). Second, after adjusting for the related variables, the ferritin level ($M{\pm}SE$) was similar in the normal uACR group ($85.70{\pm}1.20mg/g$; 95% CI, 83.35~88.05) and elevated uACR group ($82.72{\pm}4.09mg/g$; 95% CI, 74.71~90.73) (P=0.487). Chronic kidney disease was positively associated with the ferritin level in Korean adults but albuminuria was not.

본 연구는 대한민국 성인에서 eGFR 및 uACR과 Ferritin의 관련성에 대한 연구이다. 2012년 국민건강영양조사자료에서 20세 이상의 4,948명을 대상으로 관련변수를 보정한 후, 만성신장질환(CKD, eGFR<$60mL/min/1.73m^2$) 및 알부민뇨($uACR{\geq}30mg/g$)에 따른 페리틴 수준을 분석하였다. 만성신장질환군의 ferritin 수준($M{\pm}SE$) [$103.04{\pm}6.59mL/min/1.73m^2$; 95% confidence interval (CI), 90.12~115.96]은 정상군($84.87{\pm}1.16mL/min/1.73m^2$; 95% CI, 82.59~87.14)에 비하여 유의하게 높았다(P=0.007). 그러나 정상군($82.72{\pm}4.09mg/g$; 95% CI, 74.71~90.73)과 알부빈뇨군($82.72{\pm}4.09mg/g$; 95% CI, 74.71~90.73)의 ferritin 수준은 유의한 차이가 없었다(P=0.487). 결과적으로, 대한민국 성인에서 만성신장질환과 ferritin수준은 양의 상관관계가 있었지만, 알부빈뇨에서는 유의한 차이가 없었다.

Keywords

References

  1. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41:1-12. https://doi.org/10.1053/ajkd.2003.50007.
  2. World kidney day. 2019 chronic kidney disease [Internet]. Brussels; Belgium; 2019 [cited 2019 March 16]. Available from: http://www.worldkidneyday.org/faqs/chronic-kidney-disease/.
  3. Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complications. Prim Care. 2008;35:329-344. https://doi.org/10.1016/j.pop.2008.01.008.
  4. Kazancioglu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2013;3:368-371. https://doi.org/10.1038/kisup.2013.79.
  5. Narres M, Claessen H, Droste S, Kvitkina T, Koch M, Kuss O, et al. The incidence of end-stage renal disease in the diabetic (compared to the non-Diabetic) population: A systematic review. PLoS One. 2016;11:e0147329. https://doi.org/10.1371/journal.pone.0147329.
  6. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713-735. https://doi.org/10.1053/j.ajkd.2014.01.416.
  7. Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25:564-572. https://doi.org/10.1681/ASN.2013040355.
  8. Cook JD, Flowers CH, Skikne BS. The quantitative assessment of body iron. Blood. 2003;101:3359-3364. https://doi.org/10.1182/blood-2002-10-3071.
  9. Lee JA, Hwang JS, Hwang IT, Kim DH, Seo JH, Lim JS. Low vitamin D levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr Hematol Oncol. 2015;32:99-108. https://doi.org/10.3109/08880018.2014.983623.
  10. Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6:748-773. https://doi.org/10.1039/c3mt00347g.
  11. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM. Ferritin and the response to oxidative stress. Biochem J. 2001;357:241-247. https://doi.org/10.1042/0264-6021:3570241.
  12. Momeni A, Behradmanesh MS, Kheiri S, Abasi F. Serum ferritin has correlation with HbA1c in type 2 diabetic patients. Adv Biomed Res. 2015;25:e74. https://doi.org/10.4103/2277-9175.153900.
  13. Yoon H, Go JS, Kim KU, Lee KW. The association of serum ferritin and metabolic syndrome and metabolic syndrome score in Korean adults. Korean J Clin Lab Sci. 2016;48:287-295. https://doi.org/10.15324/kjcls.2016.48.4.287.
  14. Alper BS, Kimber R, Reddy AK. Using ferritin levels to determine iron-deficiency anemia in pregnancy. J Fam Pract. 2000;49:829-832.
  15. Selvam A, Buhimschi IA, Makin JD, Pattinson RC, Anderson R, Forsyth BW. Hyperferritinemia and markers of inflammation and oxidative stress in the cord blood of HIV-exposed, uninfected (HEU) infants. HIV Med. 2015;16:375-380. https://doi.org/10.1111/hiv.12214.
  16. Williams MJ, Poulton R, Williams S. Relationship of serum ferritin with cardiovascular risk factors and inflammation in young men and women. Atherosclerosis. 2002;165:179-184. https://doi.org/10.1016/S0021-9150(02)00233-2.
  17. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604-612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.
  18. Petrov ME, Buman MP, Unruh ML, Baldwin CM, Jeong MH, Reynaga-Ornelas L, et al. Association of sleep duration with kidney function and albuminuria: NHANES 2009-2012. Sleep Health. 2016;5:75-81. https://doi.org/10.1016/j.sleh.2015.12.003.
  19. Obi Y, Kimura T, Nagasawa Y, Yamamoto R, Yasuda K, Sasaki K, et al. Impact of age and overt proteinuria on outcomes of stage 3 to 5 chronic kidney disease in a referred cohort. Clin J Am Soc Nephrol. 2010;5:1558-1565. https://doi.org/10.2215/CJN.08061109.
  20. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. The Lancet. 2012;379:815-822. https://doi.org/10.1016/S0140-6736(12)60033-6.
  21. Tomonaga Y, Risch L, Szucs TD, Ambuhl PM. The prevalence of chronic kidney disease in a primary care setting: a Swiss cross-sectional study. PLoS One. 2013;8:e67848. https://doi.org/10.1371/journal.pone.0067848.
  22. Branten AJ, Swinkels DW, Klasen IS, Wetzels JF. Serum ferritin levels are increased in patients with glomerular diseases and proteinuria. Nephrol Dial Transplant. 2004;19:2754-2760. https://doi.org/10.1093/ndt/gfh454.
  23. Cases-Amenos A, Martinez-Castelao A, Fort-Ros J, Bonal-Bastons J, Ruiz MP, Valles-Prats M, et al. Prevalence of anaemia and its clinical management in patients with stages 3-5 chronic kidney disease not on dialysis in Catalonia: MICENAS I study. Nefrologia. 2014;34:189-198. https://doi.org/10.3265/Nefrologia.pre2013.Dec.12261.
  24. Kang HT, Linton JA, Kwon SK, Park BJ, Lee JH. Ferritin level Is positively associated with chronic kidney disease in Korean men, based on the 2010-2012 Korean National Health and Nutrition Examination Survey. Int J Environ Res Public Health. 2016;13:e1058. https://doi.org/10.3390/ijerph13111058.
  25. Ma H, Lin H, Hu Y, Li X, He W, Jin X, et al. Serum ferritin levels are associated with carotid atherosclerosis in Chinese postmenopausal women: the Shanghai Changfeng Study. Br J Nutr. 2015;114:1064-1071. https://doi.org/10.1017/S0007114515001944.
  26. Chang FC, Lai TS, Chiang CK, Chen YM, Wu MS, Chu TS, et al. Angiopoietin-2 is associated with albuminuria and microinflammation in chronic kidney disease. PLoS One. 2013;8: e54668. https://doi.org/10.1371/journal.pone.0054668.
  27. Kim BJ, Kim BS, Kang JH. The association between serum ferritin level, microalbuminuria and non-alcoholic fatty liver disease in non-diabetic, non-hypertensive men. Clin Exp Hypertens. 2014;36:380-385. https://doi.org/10.3109/10641963.2013.827704.
  28. Hsu YH, Huang MC, Chang HY, Shin SJ, Wahlqvist ML, Chang YL, et al. Association between serum ferritin and microalbuminuria in Type 2 diabetes in Taiwan. Diabet Med. 2013;30:1367-1373. https://doi.org/10.1111/dme.12257.
  29. Dekker LH, Nicolaou M, van der A DL, Busschers WB, Brewster LM, Snijder MB, et al. Sex differences in the association between serum ferritin and fasting glucose in type 2 diabetes among South Asian Surinamese, African Surinamese, and ethnic Dutch: the population-based SUNSET study. Diabetes Care. 2013;36:965-971. https://doi.org/10.2337/dc12-1243.
  30. Oh IH, Choi EY, Park JS, Lee CH. Association of serum ferritin and kidney function with age-related macular degeneration in the general population. PLoS One. 2016;11:E0153624. https://doi.org/10.1371/journal.pone.0153624.
  31. Kalantar-Zadeh K, Kalantar-Zadeh K, Lee GH. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin J Am Soc Nephrol. 2006;1:S9-S18. https://doi.org/10.2215/CJN.01390406.
  32. Zandman-Goddard G, Shoenfeld Y. Ferritin in autoimmune diseases. Autoimmun Rev. 2007;6:457-463. https://doi.org/10.1016/j.autrev.2007.01.016.
  33. Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010;1800:760-769. https://doi.org/10.1016/j.bbagen.2010.03.011.
  34. Kobayashi S, Maesato K, Moriya H, Ohtake T, Ikeda T. Insulin resistance in patients with chronic kidney disease. Am J Kidney Dis. 2005;45:275-280. https://doi.org/10.1053/j.ajkd.2004.09.034.
  35. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65:1009-1016. https://doi.org/10.1111/j.1523-1755.2004.00465.x.
  36. Mikhael M, Sheftel AD, Ponka P. Ferritin does not donate its iron for haem synthesis in macrophages. Biochem J. 2010;429: 463-471. https://doi.org/10.1042/BJ20100346.
  37. Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin J Am Soc Nephrol. 2006;1(Suppl 1):4-8. https://doi.org/10.2215/CJN.01490506.
  38. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20-29. https://doi.org/10.1056/NEJMoa1114248.
  39. Levey AS, Inker LA. GFR as the "Gold Standard": estimated, measured, and true. Am J Kidney Dis. 2016;67:9-12. https://doi.org/10.1053/j.ajkd.2015.09.014.

Cited by

  1. Relationship between Hypertension and the Declining Renal Function in Korean Adults vol.53, pp.1, 2019, https://doi.org/10.15324/kjcls.2021.53.1.32