DOI QR코드

DOI QR Code

Does conventional freezing affect sperm DNA fragmentation?

  • Le, Minh Tam (Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University) ;
  • Nguyen, Thai Thanh Thi (Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University) ;
  • Nguyen, Tung Thanh (Department of Histology and Embryology, Hue University of Medicine and Pharmacy, Hue University) ;
  • Nguyen, Trung Van (Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University) ;
  • Nguyen, Tam An Thi (Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University) ;
  • Nguyen, Quoc Huy Vu (Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University) ;
  • Cao, Thanh Ngoc (Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University)
  • Received : 2019.01.14
  • Accepted : 2019.04.16
  • Published : 2019.06.30

Abstract

Objective: Sperm cryopreservation has been widely used in assisted reproductive technology, as it offers great potential for the treatment of some types of male infertility. However, cryopreservation may result in changes in membrane lipid composition and acrosome status, as well as reductions in sperm motility and viability. This study aimed to evaluate sperm DNA fragmentation damage caused by conventional freezing using the sperm chromatin dispersion test. Methods: In total, 120 fresh human semen samples were frozen by conventional methods, using SpermFreeze Solution as a cryoprotectant. Routine semen analysis and a Halosperm test (using the Halosperm kit) were performed on each sample before freezing and after thawing. Semen parameters and sperm DNA fragmentation were compared between these groups. Results: There was a significant decrease in sperm progressive motility, viability, and normal morphology after conventional freezing (32.78%, 79.58%, and 3.87% vs. 16%, 55.99%, and 2.55%, respectively). The sperm head, midpiece, and tail defect rate increased slightly after freezing. Furthermore, the DNA fragmentation index (DFI) was significantly higher after thawing than before freezing (19.21% prior to freezing vs. 22.23% after thawing). Significant increases in the DFI after cryopreservation were observed in samples with both normal and abnormal motility and morphology, as well as in those with normal viability. Conclusion: Conventional freezing seems to damage some sperm parameters, in particular causing a reduction in sperm DNA integrity.

Keywords

References

  1. World Health Organization. Laboratory manual of the WHO for the examination of human semen and sperm-cervical mucus interaction. Ann Ist Super Sanita 2001;37:I-XII, 1-123.
  2. Le MT, Nguyen TT, Nguyen TT, Nguyen VT, Nguyen TT, Nguyen VQ, et al. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol 2019;234:14-20. https://doi.org/10.1016/j.ejogrb.2019.01.001
  3. Colas C, Junquera C, Perez-Pe R, Cebrian-Perez JA, Muino-Blanco T. Ultrastructural study of the ability of seminal plasma proteins to protect ram spermatozoa against cold-shock. Microsc Res Tech 2009;72:566-72. https://doi.org/10.1002/jemt.20710
  4. Hammadeh ME, Askari AS, Georg T, Rosenbaum P, Schmidt W. Effect of freeze-thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int J Androl 1999;22:155-62. https://doi.org/10.1046/j.1365-2605.1999.00162.x
  5. Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod 2004;71:1167-73. https://doi.org/10.1095/biolreprod.104.028811
  6. Rahiminia T, Hosseini A, Anvari M, Ghasemi-Esmailabad S, Talebi AR. Modern human sperm freezing: effect on DNA, chromatin and acrosome integrity. Taiwan J Obstet Gynecol 2017;56:472-6. https://doi.org/10.1016/j.tjog.2017.02.004
  7. Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet 2010;27:3-12. https://doi.org/10.1007/s10815-009-9359-x
  8. Lusignan MF, Li X, Herrero B, Delbes G, Chan PT. Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology 2018;6:829-35. https://doi.org/10.1111/andr.12529
  9. Muriel L, Garrido N, Fernandez JL, Remohi J, Pellicer A, de los Santos MJ, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 2006;85:371-83. https://doi.org/10.1016/j.fertnstert.2005.07.1327
  10. Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012;2012:854837. https://doi.org/10.1155/2012/854837
  11. Punyatanasakchai P, Sophonsritsuk A, Weerakiet S, Wansumrit S, Chompurat D. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function. Fertil Steril 2008;90:1978-82. https://doi.org/10.1016/j.fertnstert.2007.09.066
  12. Agha-Rahimi A, Khalili MA, Nabi A, Ashourzadeh S. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding. Reprod Biomed Online 2014;28:352-8. https://doi.org/10.1016/j.rbmo.2013.11.015
  13. Slabbert M, du Plessis SS, Huyser C. Large volume cryoprotectant-free vitrification: an alternative to conventional cryopreservation for human spermatozoa. Andrologia 2015;47:594-9. https://doi.org/10.1111/and.12307
  14. Sanchez-Alvarez J, Cano-Corres R, Fuentes-Arderiu X. A complement for the WHO laboratory manual for the examination and processing of human semen (First Edition, 2010). EJIFCC 2012;23:103-6.
  15. Tandara M, Bajic A, Tandara L, Bilic-Zulle L, Sunj M, Kozina V, et al. Sperm DNA integrity testing: big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology 2014;2:678-86. https://doi.org/10.1111/j.2047-2927.2014.00234.x
  16. Fernandez JL, Muriel L, Goyanes V, Segrelles E, Gosalvez J, Enciso M, et al. Halosperm is an easy, available, and cost-effective alternative for determining sperm DNA fragmentation. Fertil Steril 2005;84:860. https://doi.org/10.1016/j.fertnstert.2005.05.013
  17. Paoli D, Lombardo F, Lenzi A, Gandini L. Sperm cryopreservation: effects on chromatin structure. Adv Exp Med Biol 2014;791:137-50. https://doi.org/10.1007/978-1-4614-7783-9_9
  18. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl 2009;32:46-56. https://doi.org/10.1111/j.1365-2605.2008.00943.x
  19. Ozkavukcu S, Erdemli E, Isik A, Oztuna D, Karahuseyinoglu S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J Assist Reprod Genet 2008;25:403-11. https://doi.org/10.1007/s10815-008-9232-3
  20. Stanic P, Tandara M, Sonicki Z, Simunic V, Radakovic B, Suchanek E. Comparison of protective media and freezing techniques for cryopreservation of human semen. Eur J Obstet Gynecol Reprod Biol 2000;91:65-70. https://doi.org/10.1016/S0301-2115(99)00255-9
  21. Amor H, Zeyad A, Alkhaled Y, Laqqan M, Saad A, Ben Ali H, et al. Relationship between nuclear DNA fragmentation, mitochondrial DNA damage and standard sperm parameters in spermatozoa of fertile and sub-fertile men before and after freezethawing procedure. Andrologia 2018;50:e12998. https://doi.org/10.1111/and.12998
  22. Said TM, Gaglani A, Agarwal A. Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online 2010;21:456-62. https://doi.org/10.1016/j.rbmo.2010.05.011
  23. Mazur P, Rall WF, Rigopoulos N. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes. Biophys J 1981;36:653-75. https://doi.org/10.1016/S0006-3495(81)84757-1
  24. Oberoi B, Kumar S, Talwar P. Study of human sperm motility post cryopreservation. Med J Armed Forces India 2014;70:349-53. https://doi.org/10.1016/j.mjafi.2014.09.006
  25. Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, et al. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction 2008;136:167-73. https://doi.org/10.1530/REP-07-0463
  26. Satirapod C, Treetampinich C, Weerakiet S, Wongkularb A, Rattanasiri S, Choktanasiri W. Comparison of cryopreserved human sperm from solid surface vitrification and standard vapor freezing method: on motility, morphology, vitality and DNA integrity. Andrologia 2012;44 Suppl 1:786-90. https://doi.org/10.1111/j.1439-0272.2011.01267.x
  27. Hosseini A, Khalili MA, Talebi AR, Agha-Rahimi A, Ghasemi-Esmailabad S, Woodward B, et al. Cryopreservation of low number of human spermatozoa; which is better: vapor phase or direct submerging in liquid nitrogen? Hum Fertil (Camb) 2019;22:126-32. https://doi.org/10.1080/14647273.2018.1456681
  28. Rofeim O, Gilbert BR. Long-term effects of cryopreservation on human spermatozoa. Fertil Steril 2005;84:536-7. https://doi.org/10.1016/j.fertnstert.2005.02.035
  29. Desrosiers P, Legare C, Leclerc P, Sullivan R. Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil Steril 2006;85:1744-52. https://doi.org/10.1016/j.fertnstert.2005.11.046
  30. Chohan KR, Griffin JT, Carrell DT. Evaluation of chromatin integrity in human sperm using acridine orange staining with different fixatives and after cryopreservation. Andrologia 2004;36:321-6. https://doi.org/10.1111/j.1439-0272.2004.00626.x
  31. Spano M, Cordelli E, Leter G, Lombardo F, Lenzi A, Gandini L. Nuclear chromatin variations in human spermatozoa undergoing swim-up and cryopreservation evaluated by the flow cytometric sperm chromatin structure assay. Mol Hum Reprod 1999;5:29-37. https://doi.org/10.1093/molehr/5.1.29
  32. de Paula TS, Bertolla RP, Spaine DM, Cunha MA, Schor N, Cedenho AP. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril 2006;86:597-600. https://doi.org/10.1016/j.fertnstert.2006.01.047
  33. Isachenko E, Isachenko V, Katkov II, Rahimi G, Schondorf T, Mallmann P, et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum Reprod 2004;19:932-9. https://doi.org/10.1093/humrep/deh194
  34. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 2001;76:892-900. https://doi.org/10.1016/S0015-0282(01)02834-5
  35. Evenson DP, Melamed MR. Rapid analysis of normal and abnormal cell types in human semen and testis biopsies by flow cytometry. J Histochem Cytochem 1983;31(1A Suppl):248-53. https://doi.org/10.1177/31.1A_SUPPL.6186729
  36. Duru NK, Morshedi M, Schuffner A, Oehninger S. Cryopreservation-thawing of fractionated human spermatozoa and plasma membrane translocation of phosphatidylserine. Fertil Steril 2001;75:263-8. https://doi.org/10.1016/S0015-0282(00)01694-0
  37. Grunewald S, Sharma R, Paasch U, Glander HJ, Agarwal A. Impact of caspase activation in human spermatozoa. Microsc Res Tech 2009;72:878-88. https://doi.org/10.1002/jemt.20732
  38. Karabulut S, Demiroglu-Zergeroglu A, Yilmaz E, Kutlu P, Keskin I. Effects of human sperm cryopreservation on apoptotic markers in normozoospermic and non-normozoospermic patients. Zygote 2018;26:308-13. https://doi.org/10.1017/S0967199418000254
  39. Henkel R. Clinical utility of sperm DNA fragmentation testing: a commentary. Transl Androl Urol 2017;6(Suppl 4):S632-5. https://doi.org/10.21037/tau.2017.01.10
  40. Vandekerckhove F. Guidelines on sperm DNA fragmentation testing. Transl Androl Urol 2017;6(Suppl 4):S586-7. https://doi.org/10.21037/tau.2017.03.49
  41. Panner Selvam MK, Agarwal A. A systematic review on sperm DNA fragmentation in male factor infertility: laboratory assessment. Arab J Urol 2018;16:65-76. https://doi.org/10.1016/j.aju.2017.12.001
  42. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 2016;5:935-50. https://doi.org/10.21037/tau.2016.10.03
  43. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 2006;27:53-9. https://doi.org/10.2164/jandrol.05068

Cited by

  1. DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice vol.10, 2020, https://doi.org/10.1038/s41598-020-60876-9
  2. Best laboratory practices and therapeutic interventions to reduce sperm DNA damage vol.53, pp.2, 2021, https://doi.org/10.1111/and.13736
  3. Green tea extract increases the quality and reduced DNA mutation of post-thawed Kacang buck sperm vol.7, pp.3, 2019, https://doi.org/10.1016/j.heliyon.2021.e06372
  4. Time-lapse imaging of human embryos fertilized with testicular sperm reveals an impact on the first embryonic cell cycle vol.104, pp.6, 2019, https://doi.org/10.1093/biolre/ioab031