References
- Pincus. G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J Exp Med 1935;62:665-75. https://doi.org/10.1084/jem.62.5.665
- Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 1965;208:349-51. https://doi.org/10.1038/208349a0
- Debey P, Szollosi MS, Szollosi D, Vautier D, Girousse A, Besombes D. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev 1993;36:59-74. https://doi.org/10.1002/mrd.1080360110
- Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA. Chromatin organization during mouse oocyte growth. Mol Reprod Dev 1995;41:479-85. https://doi.org/10.1002/mrd.1080410410
- Tan JH, Wang HL, Sun XS, Liu Y, Sui HS, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol Hum Reprod 2009;15:1-9. https://doi.org/10.1093/molehr/gan069
- Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation and fertilization in vitro. Biol Reprod 1989;41:268-76. https://doi.org/10.1095/biolreprod41.2.268
- Zuccotti M, Ponce RH, Boiani M, et al. The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 2002;10:73-8. https://doi.org/10.1017/S0967199402002101
- Pesty A, Broca O, Poirot C, Lefevre B. The role of PLC beta 1 in the control of oocyte meiosis during folliculogenesis. Reprod Sci 2008;15:661-72. https://doi.org/10.1177/1933719108322434
- Motlik J, Fulka J, Flechon JE. Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J Reprod Fertil 1986;76:31-7. https://doi.org/10.1530/jrf.0.0760031
- Wu D, Cheung QC, Wen L, Li J. A growth-maturation system that enhances the meiotic and developmental competence of porcine oocytes isolated from small follicles. Biol Reprod 2006;75:547-54. https://doi.org/10.1095/biolreprod.106.051300
- Pavlok A, Lucas-Hahn A, Niemann H. Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Mol Reprod Dev 1992;31:63-7. https://doi.org/10.1002/mrd.1080310111
- Lodde V, Modina S, Galbusera C, Franciosi F, Luciano AM. Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Mol Reprod Dev 2007;74:740-9. https://doi.org/10.1002/mrd.20639
- Mattson BA, Albertini DF. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev 1990;25:374-83. https://doi.org/10.1002/mrd.1080250411
- Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, Debey P. Differential transcriptional activity associated with chromatin configuration in fully-grown mouse germinal vesicle oocytes. Biol Reprod 1999;60:580-7. https://doi.org/10.1095/biolreprod60.3.580
- Wickramasinghe D, Ebert KM, Albertini DF. Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes. Dev Biol 1991;143:162-72. https://doi.org/10.1016/0012-1606(91)90063-9
- Mandl AM. Pre-ovulatory changes in the oocyte of the adult rat. Proc R Soc Lond B Biol Sci 1963;158:105-118. https://doi.org/10.1098/rspb.1963.0037
- Crozet N, Motlik J, Szollosi D. Nucleolar fine structure and RNA synthesis in porcine oocytes during the early stages of antrum formation. Biol Cell 1981;41:35-42.
- Lefevre B, Gougeon A, Nome F, Testart J. In vivo changes in oocyte germinal vesicle related to follicular quality and size at mid-follicular phase during stimulated cycles in the Cynomolgus monkey. Reprod Nutr Dev 1989;29:523-31. https://doi.org/10.1051/rnd:19890501
- Tesarik J, Travnic P, Kopecny V, Kristek F. Nucleolar transformations in the human oocyte after completion of growth. Gamete Res 1983;8:267-77. https://doi.org/10.1002/mrd.1120080307
- Parfenov V, Potchukalina G, Dudina L, Kostyuchek D, Gruzova M. Human antral follicles: oocyte nucleus and the karyosphere formation (electron microscopic and autoradiographic data). Gamete Res 1989;22:219-31. https://doi.org/10.1002/mrd.1120220209
- De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol 2001;229:224-36. https://doi.org/10.1006/dbio.2000.9947
- Bjerregaard B, Wrenzycki C, Philimonenko VV, et al. Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biol Reprod 2004;70:925-35. https://doi.org/10.1095/biolreprod.103.020941
- Funahashi H, Cantley T, Day BN. Different hormonal requirements of pig oocyte-cumulus complexes during maturation in vitro. J Reprod Fertil 1994;101:159-65. https://doi.org/10.1530/jrf.0.1010159
- Petters RM, Wells KD. Culture of pig embryos. J Reprod Fertil Suppl 1993;48:61-73.
- Oqani RK, Lee MG, Diao YF, Xun R, Jin DI. Halogenated nucleotide labeling of nascent RNAs reveals dynamic transcription in growing pig oocytes. Dev Dyn 2013;242:16-22. https://doi.org/10.1002/dvdy.23901
- Hirao Y, Nagai T, Kubo M, Miyano T, Miyake M, Kato S. In vitro growth and maturation of pig oocytes. J Reprod Fertil 1994;100:333-9. https://doi.org/10.1530/jrf.0.1000333
- Crozet N, Ahmed-Ali M, Dubos MP. Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. J Reprod Fertil 1995;103:293-8. https://doi.org/10.1530/jrf.0.1030293
- Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 2002;57:1523-32. https://doi.org/10.1016/S0093-691X(02)00655-6
- Kauffold J, Amer HA, Berqfeld U, Weber W, Sobirai A. The in vitro developmental competence of oocytes from juvenile calves is related to follicular diameter. J Reprod Dev 2005;51:325-32. https://doi.org/10.1262/jrd.17002
- Motlik J, Fulka J. Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J Exp Zool 1976; 198:155-62. https://doi.org/10.1002/jez.1401980205
- Nagai S, Yasumizu T, Kasai T, Hirata S, Mizuno K, Kato J. Effect of oocyte retrieval from a small leading follicle in fixed-schedule in vitro fertilization program. J Obstet Gynaecol Res 1997;23:165-9. https://doi.org/10.1111/j.1447-0756.1997.tb00826.x
- Guthrie HD, Garrett WM. Changes in porcine oocyte germinal vesicle development as follicles approach preovulatory maturity. Theriogenology 2000;54:389-99. https://doi.org/10.1016/S0093-691X(00)00356-3
Cited by
- Optimization of in vitro embryo production and zygote vitrification for the indigenous Vietnamese Ban pig: The effects of different in vitro oocyte maturation systems vol.91, pp.1, 2019, https://doi.org/10.1111/asj.13412
- Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals vol.9, pp.6, 2019, https://doi.org/10.3390/cells9061497
- Challenges and Considerations during In Vitro Production of Porcine Embryos vol.10, pp.10, 2021, https://doi.org/10.3390/cells10102770
- Relationship between chromatin configuration and in vitro maturation ability in guinea pig oocytes vol.7, pp.6, 2021, https://doi.org/10.1002/vms3.596