References
- Bell DA, Bender R, Hooper AJ, et al. Impact of interpretative commenting on lipid profiles in people at high risk of familial hypercholesterolaemia. Clin Chim Acta 2013;422:21-5. https://doi.org/10.1016/j.cca.2013.03.027
- Rodriguez-Perez JM, Posadas-Sanchez R, Blachman-Braun R, et al. HHIPL-1 (rs2895811) gene polymorphism is associated with cardiovascular risk factors and cardiometabolic parameters in Mexicans patients with myocardial infarction. Gene 2018;663:34-40. https://doi.org/10.1016/j.gene.2018.04.030
- Vilahur G, Padro T, Badimon L. Atherosclerosis and thrombosis: insights from large animal models. J Biomed Biotechnol 2011;2011:Article ID 907575. http://dx.doi.org/10.1155/2011/907575
- Wang Y, Du Y, Shen B, et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep 2015;5:8256. http://dx.doi.org/10.1038/srep08256
- Chen F, Wang Y, Yuan Y, et al. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genomics 2015;42:437-44. https://doi.org/10.1016/j.jgg.2015.05.002
- Zeng Z, Chen R, Liu C, Yang H, Chen C, Huang L. Evaluation of the causality of the low-density lipoprotein receptor gene (LDLR) for serum lipids in pigs. Anim Genet 2015;45:665-73. https://doi.org/10.1111/age.12183
- Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009;29:431-8. https://doi.org/10.1161/ATVBAHA.108.179564
-
Huang L, Hua Z, Xiao H, et al. CRISPR/Cas9-mediated
$ApoE^{-/-}$ and$LDLR^{-/-}$ double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget 2017;8:37751-60. https://doi.org/10.18632/oncotarget.17154 - Pena RN, Canovas A, Varona L, et al. Nucleotide sequence and association analysis of pig apolipoprotein-B and LDLreceptor genes. Anim Biotechnol 2009;20:110-23. https://doi.org/10.1080/10495390902892518
- Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am 1984;251:58-66. https://doi.org/10.1038/scientificamerican1184-58
- Momtazi AA, Banach M, Pirro M, Stein EA, Sahebkar A. MicroRNAs: new therapeutic targets for familial hypercholesterolemia? Clin Rev Allergy Immunol 2018;54:224-33. https://doi.org/10.1007/s12016-017-8611-x
- Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest 2013;123:11-8. https://doi.org/10.1172/JCI62876
- Goedeke L, Aranda JF, Fernandezhernando C. microRNA regulation of lipoprotein metabolism. Curr Opin Lipidol 2014;25:282-8. https://doi.org/10.1097/MOL.0000000000000094
- Goedeke L, Wagschal A, Fernandezhernando C, Naar AM. miRNA regulation of LDL-cholesterol metabolism. Biochim Biophys Acta 2016;1861:2047-52. https://doi.org/10.1016/j.bbalip.2016.03.007
- Aryal B, Singh AK, Rotllan N, Price N, Fernandezhernando C. microRNAs and lipid metabolism. Curr Opin Lipidol 2017;28:273-80. https://doi.org/10.1097/MOL.0000000000000420
- Zhang XD, Feng YF, Zhang X, et al. Differential expression of miR-145, miR-429 and its target genes in partial reproductive tissues of swine with high and low litter size. Ann Anim Sci 2017;17:671-81. https://doi.org/10.1515/aoas-2016-0082
-
Soundarya PK, Nirmala P, Ashok KP, Krishna PT. Effect of Lutein in the expression of
$PPAR{\alpha}$ and LDLR in hypercholesterolemic male Wistar rats. Int J Basic Clin Pharmacol 2018;7:684-90. https:// doi.org/10.18203/2319-2003.ijbcp20181170 - Goedeke L, Rotlan N, Canfran-Duque A, et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 2015;21:1280-9. https://doi.org/10.1038/nm.3949
- Jiang H, Zhang J, Du Y, et al. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 2015;243:523-32. https://doi.org/10.1016/j.atherosclerosis.2015.10.026
- Alvarez ML, Khosroheidari M, Eddy E, Done SC. MicroRNA-27a decreases the level and efficiency of the ldl receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 2015;242:595-604. https://doi.org/10.1016/j.atherosclerosis.2015.08.023
- Wagschal A, Najafi-Shoushtari SH, Wang L, et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 2015;21:1290-7. https://doi.org/10.1038/nm.3980
- Wang D, Wang Y, Ma J, et al. MicroRNA-20a participates in the aerobic exercise-based prevention of coronary artery disease by targeting PTEN. Biomed Pharmacother 2017;95:756-63. https://doi.org/10.1016/j.biopha.2017.08.086
- Liang B, Wang X, Song X, et al. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862:929-38. https://doi.org/10.1016/j.bbalip.2017.06.002
- Brummer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays 2014;36:617-26. https://doi.org/10.1002/bies.201300104
Cited by
- MicroRNA-20a-5p Ameliorates Non-alcoholic Fatty Liver Disease via Inhibiting the Expression of CD36 vol.8, 2020, https://doi.org/10.3389/fcell.2020.596329