DOI QR코드

DOI QR Code

Spin orbit torque detected by spin torque FMR in W/CoFeB bilayer

  • Kim, Changsoo (Spin Convergence Research Team, Korea Research Institute of Standards and Science) ;
  • Moon, Kyoung-Woong (Spin Convergence Research Team, Korea Research Institute of Standards and Science) ;
  • Chun, Byong Sun (Spin Convergence Research Team, Korea Research Institute of Standards and Science) ;
  • Kim, Dongseok (Spin Convergence Research Team, Korea Research Institute of Standards and Science) ;
  • Hwang, Chanyong (Spin Convergence Research Team, Korea Research Institute of Standards and Science)
  • 투고 : 2019.06.07
  • 심사 : 2019.06.11
  • 발행 : 2019.06.20

초록

Spin orbit torque would be applied as the next generation of MRAM, so many researchers are interested in related field. To make a more efficient device, electric current should convert into spin current with high efficiency. Moreover, it becomes important to measure efficiency of spin orbit torque accurately. We measured spin torque FMR of W/CoFeB hetero structure system with direct current. The efficiencies of the damping like torque and field like torque were measured by using the linewidth and on-resonance field proportional to direct current. In addition, we analyzed that a quadratic shift of the on-response field was caused by the Joule heating.

키워드

JGGMB2_2019_v23n2_46_f0001.png 이미지

Figure 1 (A) Schematic diagram of DC tuned spin torque FMR. Direct and microwave currents flow along x-axis when an external magnetic field is applied with a tilted angle. (B) Picture of spin torque FMR device. CPWG is patterned for impedance matching. A GSG probe is in contact with the electrodes of device. (C) Electronic configuration of spin torque FMR.

JGGMB2_2019_v23n2_46_f0002.png 이미지

Figure 2 Direct current dependence of linewidth

JGGMB2_2019_v23n2_46_f0003.png 이미지

Figure 3 (A) Direct current dependence of on-resonance field. (B) Odd component and (C) even component of on-resonance field.

참고문헌

  1. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999) https://doi.org/10.1103/PhysRevLett.83.1834
  2. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015) https://doi.org/10.1103/RevModPhys.87.1213
  3. K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blgel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Nat, Nanotechnol. 8, 587 (2013) https://doi.org/10.1038/nnano.2013.145
  4. X. Fan, J. Wu, Y. Chen, M. J. Jerry, H. Zhang, and J. Q. Xiao, Nat. Commun. 4, 1799 (2013) https://doi.org/10.1038/ncomms2709
  5. M. Harder, Y. Gui, and C.-M. Hu, Phys. Rep. 661, 1 (2016) https://doi.org/10.1016/j.physrep.2016.10.002
  6. A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, Nature 438, 339 (2005) https://doi.org/10.1038/nature04207
  7. J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67 (2008) https://doi.org/10.1038/nphys783
  8. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Nat. Phys. 4, 37 (2008) https://doi.org/10.1038/nphys784
  9. L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011) https://doi.org/10.1103/PhysRevLett.106.036601
  10. K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, Phys. Rev. Lett. 101, 036601 (2008) https://doi.org/10.1103/PhysRevLett.101.036601
  11. K.-U. Demasius, T. Phung, W. Zhang, B. P. Hughes, S.-H. Yang, A. Kellock, W. Han, A. Pushp, and S. S. P. Parkin, Nat. Commun. 7, 10644 (2016) https://doi.org/10.1038/ncomms10644
  12. C. Kim, D. Kim, B. S. Chun, K.-W. Moon, and C. Hwang, Phys. Rev. Applied 9, 054035 (2018) https://doi.org/10.1103/PhysRevApplied.9.054035
  13. K.-M. Lee, J. W. Choi, J. Sok, and B.-C. Min, AIP Adv. 7, 065107 (2017) https://doi.org/10.1063/1.4985720