DOI QR코드

DOI QR Code

Thermal Decomposition Behavior of Boron-Potassium Nitrate (BKNO3) by TGA

열중량분석법에 의한 Boron-Potassium Nitrate(BKNO3)의 열분해 특성 연구

  • Received : 2018.11.02
  • Accepted : 2019.03.05
  • Published : 2019.04.01

Abstract

The thermal decomposition characteristics of boron-potassium nitrate ($BKNO_3$) were investigated by non-isothermal thermal gravimetric analysis (TGA). Two steps of mass loss were observed in the temperature range between room temperature and $600^{\circ}C$. Kinetic parameters of the thermal decompositions were evaluated from the measured TGA curves using the AKTS Thermokinetics Software. For the first step of mass loss ($220-360^{\circ}C$) corresponding to the thermal decomposition process of the binder (Laminac/Lupersol), the activation energy is in the range of approximately 120-270 kJ/mol when evaluated by Friedman's iso-conversional method, while the value of activation energy varies in the range of approximately 150-400 kJ/mol during the second step process ($360-550^{\circ}C$).

붕소-질산칼륨($BKNO_3$)의 열분해특성을 비등온방식의 TGA(열중량분석법)를 사용하여 평가하였다. 상온과 $600^{\circ}C$의 온도범위에서 2단계에 걸쳐 질량감소가 발생하는 것이 관찰되었다. 열분해특성에 대한 속도론적 파라메타값들은 TGA로부터의 데이터를 AKTS Thermokinetics 소프트웨어를 사용하여 분석되었다. $200^{\circ}C$에서 $360^{\circ}C$의 온도범위에서 발생하는 1차 무게감소는 바인더 (Laminac/Lupersol)의 열분해에 해당하며, Friedman의 등전환법으로 분석되는 경우 활성화에너지는 120에서 270 kJ/mol 사이의 값을 가진 반면에 2차감소 영역($360-550^{\circ}C$)에서의 활성화에너지 값은 150에서 400 kJ/mol의 범위 내에 있었다.

Keywords

References

  1. Shim, J.S., Kim, S.B., Ahn, G.H. and Kim, J.H., “The Characteristics Analysis and Manufacture of Metal Explosive(ZPP) on PMD,” Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 3, pp. 25-31, 2016. https://doi.org/10.6108/KSPE.2016.20.3.025
  2. Shim, J.S., Kim, S.B., Ahn, G.H. Kim, J.H. and Ryu, B.T., “The Manufacturing Process and Characteristic Analysis of BKNO3 Metal-Explosive for PMD,” Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 90-96, 2018. https://doi.org/10.6108/KSPE.2018.22.3.090
  3. U.S. Depart of Defense, "Pellets/Granules: Boron/ Potassium Nitrate," MIL-P-46994B, 1982.
  4. Lee, H.S., "A Heuristic Model for Estimating Ignition Delays for Pressure Cartridges with Loosely Packed Energetic Materials," 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, F.L., U.S.A., pp. 1-10, Jul. 2015.
  5. Lee, H.S., "Ignition Delay Investigation in a Pyrotechnic Cartridge with Loosely-Packed Propellant Grains", 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, C.O., U.S.A., pp. 1-11, Aug. 2009.
  6. Go, C.A., Kim, J.H., Seo, T.S., Ko, S.W. and Ryu, B.T., "Thermal Decomposition Kinetics of Boron-Potassium Nitrate by Differential Scanning Calorimetry and Heat Flow Calorimetry," 49th KSPE Autumn Conference, Busan, Korea, pp. 486-487, Nov. 2017.
  7. Kim, J.H., Go, C.A., Ko, S.W. and Ryu, B.T., "Thermal Decomposition Kinetics of BKNO3 by Differential Scanning Calorimetry (DSC) and Heat Flow Calorimetry (HFC)," 49th International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany, P133, Jun. 2018.
  8. AKTS Thermokinetics Software V4.10, " AKTS User Manual," AKTS AG, Siders, Switzerland.
  9. Friedman, H.L., "Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry. Application to a Phenolic Plastic," Journal of Polymer Science Part C: Polymer Symposia, Vol. 6, Issue 1, pp. 183-195, 1964. https://doi.org/10.1002/polc.5070060121
  10. ASTM International, "Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method," E698-11, 2011.
  11. Anderson, D.A. and Freeman, E.S., “The Kinetics of the Thermal Degradation of the Synthetic Styrenated Polyester, Laminac 4116,” J. Applied Polymer Science, Vol. 1, No. 2, pp. 192-199, 1959. https://doi.org/10.1002/app.1959.070010210
  12. Roduit, B., Xia, L., Folly, P., Berger, B., Mathieu, J., Sarbach, A., Andres, H., Ramin, M., Voelsanger, B., Spitzer, D., Moulard, H. and Dilhan, D., “The Simulation of the Thermal Behavior of Energetic Materials based on DSC and HFC Signals,” Journal of Thermal Analysis and Calorimetry, Vol. 93, No. 1, pp. 143-152, 2008. https://doi.org/10.1007/s10973-007-8864-3
  13. Roduit, B., Dermaut, W., Lunghi, A., Folly, P., Berger, B. and Sarbach, A., “Advanced Kinetics-Based Simulation of Time to Maximum Rate under Adiabatic Conditions,” Journal of Thermal Analysis and Calorimetry, Vol. 93, No. 1, pp. 163-173, 2008. https://doi.org/10.1007/s10973-007-8866-1
  14. Neyer, B.T., Cox, L., Stoutenborough, T. and Tomasoski, T., "HNS-IV Explosive Properties and Characterization Tests," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, A.L., U.S.A., pp. 1-6, Jul. 2003.
  15. Yang, L.C., "Correlation between the Accelerated Aging Test(AAT) and Real World Storage Temperature," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, O.H., U.S.A., pp. 1-12, Jul. 2007.