DOI QR코드

DOI QR Code

1D 네트워크 모델을 이용한 항공용 가스터빈 연소기에서의 음향장 해석

Acoustic Field Analysis using 1D Network Model in an Aero Gas Turbine Combustor

  • Pyo, Yeongmin (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University) ;
  • Park, Heeho (Gas Turbine Development Team, Hanwha Aerospace) ;
  • Jung, Seungchai (Gas Turbine Development Team, Hanwha Aerospace) ;
  • Kim, Daesik (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University)
  • 투고 : 2019.01.17
  • 심사 : 2019.02.12
  • 발행 : 2019.04.01

초록

본 연구에서는 항공용 가스터빈의 연소실에서의 연소불안정 해석을 위한 고유값 도출을 목적으로 하는 1D 네트워크 모델을 개발하였다. 모델은 면적 변화가 있는 음향 네트워크 요소들 사이의 각종 지배 방정식을 통하여 개발되었고, 이를 이용하여 현재 개발 중인 복잡한 유로 형상을 갖는 실제 항공용 가스터빈 연소기에서의 음향장 해석에 적용되었다. 본 모델을 통하여 도출된 음향장 해석 결과는 3차원 유한요소해석 기반의 헬름홀츠 솔버의 계산 결과와 비교하였다.

The present work suggests a numerical approach using a thermoacoustic network model for the eigenvalue calculation of thermoacoustic instability problems in an aero gas turbine combustor. The model is developed based on the conservation laws for mass, momentum, and energy between acoustic network elements with an area change. Acoustic field in a practical aero gas turbine combustor which has a complicated flow path is analyzed using the current model. The predictive capabilities of the current modeling approach are compared with the acoustic characteristics calculated using Helmholtz solver based on 3D finite element method(FEM).

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단, 산업통상자원부

참고문헌

  1. Lieuwen, T. and Yang, V., "Combustion Instability in Gas Turbine Engines," The American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Reston, V.A., U.S.A., 2005.
  2. Huang, Y., Sung, H.G., Hsieh, S.Y., and Yang, V., “Large-Eddy Simulation of Combustion Dynamics of Lean-Premixed Swirl-Stabilized Combustor,” Journal of Propulsion and Power, Vol. 19, No. 5, pp. 782-794, 2003. https://doi.org/10.2514/2.6194
  3. Ducruix, S., Schuller, T., Durox, D. and Candel, S., “Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms,” Journal of Propulsion and Power, Vol. 19, No. 5, pp. 722-734, 2003. https://doi.org/10.2514/2.6182
  4. Lieuwen, T., “Modeling Premixed Combustion-Acoustic Wave Interactions: A Review,” Journal of Propulsion and Power, Vol. 21, No. 4, pp. 591-599, 2003. https://doi.org/10.2514/1.9021
  5. Wolf, P., Balakrishnam, R., Sraffelbach, G., Gicquel, L. and Poinsot, T., “Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers,” Journal of Flow, Turbulence and Combustion, Vol. 88, No. 1-2, pp. 191-206, 2012. https://doi.org/10.1007/s10494-011-9367-7
  6. Kim, S.K., Kim, D. and Cha, D.J., "Finite Element Analysis of Self-Excited Instabilities in a Lean Premixed Gas Turbine Combustor," International Journal of Heat and Mass Transfer, Vol. 120, pp. 350-360, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.021
  7. Lim, J., Kim, D., Kim, S.K. and Cha, D.J., “Effects of Acoustic Boundary Conditions on Combustion Instabilities in a Gas Turbine Combustor,” Journal of the Korean Society of Propulsion Engineers, Vol. 19, No. 4, pp. 15-23, 2015. https://doi.org/10.6108/KSPE.2015.19.4.015
  8. Stow, S.R. and Dowling, A.P., "Thermoacoustic Oscillations in an Annular Combustor," ASME Turbo Expo 2001, New Orleans, Louisiana, U.S.A., ASME GT2001-0037, June 2001.
  9. Lehoucq, R. and Sorensen, D., "ARPACK. User's Guide: Solution of Large Scale Eigenvalue Problems with Implicitly restarted Arnoldi Methods," retrieved 5 March 2017 from http://www.caam.rice.edu/software/ARPACK/, 8 October 1997.