DOI QR코드

DOI QR Code

Supersonic Mach Disk Characteristics in a Plasma Wind Tunnel

플라즈마 풍동의 초음속 마하 디스크 특성

  • Chinnaraj, Rajesh Kumar (Aerospace Engineering Department, Chonbuk National University) ;
  • Oh, Philyong (High Enthalpy Plasma Research Center, Chonbuk National University) ;
  • Choi, Seongman (Aerospace Engineering Department, Chonbuk National University)
  • Received : 2018.06.18
  • Accepted : 2018.12.01
  • Published : 2019.02.01

Abstract

A primary investigation on the underexpanded flow generated in a 0.4 MW class high enthalpy supersonic arc-heated plasma wind tunnel is conducted experimentally. The diameter and the position of the Mach disk from the nozzle exit is measured for overall pressure ratios ranging from 200 to 30. The empirical correlations for Mach disk diameter and position are determined which show very good agreement with experimental results.

0.4 MW 급 고 엔탈피 초음속 아크 가열 플라즈마 풍동에서 발생된 팽창 유동에 대한 기초연구를 실험적으로 완료하였다. 노즐 출구로부터의 마하 디스크의 직경과 위치는 전체 압력비가 200에서 30까지 측정되었다. 마하 디스크 직경과 위치에 대한 경험적인 상관관계는 실험결과와 매우 일치하는 결과를 얻었다.

Keywords

References

  1. Rajesh Kumar, C., Oh, P.Y. and Choi, S.M., et al., "An Experimental Setup for Analysis and Validation of Materials for Thermal Protection Systems using Plasma Wind Tunnel", Proceedings of the 8th Asian Joint Conference on Propulsion and Power, AJCPP2016-040, Takamatsu, Japan, 2016.
  2. Rajesh Kumar, C., Oh, P.Y. and Choi, S.M., "Enthalpy Estimation in a 0.4 MW Class Arc-Jet Plasma Wind Tunnel", Proceedings of the 9h Asian Joint Conference on Propulsion and Power, AJCPP2018-062, Xiamen, China, 2018.
  3. Crist, S., Sherman, P.M. and Glass, D.R., "Study of the Highly Underexpanded Sonic Jet", AIAA Journal, Vol. 4, No. 1, pp. 68-71, 1966.4. https://doi.org/10.2514/3.3386
  4. Franquet, E., Perrier, V., et. al., "Free Under Expanded Jets in a Quiescent Medium: A Review", Progress in Aerospace Sciences, Vol. 77, pp. 25-53, 2015. https://doi.org/10.1016/j.paerosci.2015.06.006
  5. Poggie, J., McLaughlin T. and Leonov, S., "Plasma Aerodynamics: Current Status and Future Directions", AerospaceLab Journal, Issue. 10, pp. 1-6, 2015.
  6. Mulder, M., Aeronautics and Astronautics, Intechopen, 2011.
  7. Rayle, W, "Plasma Propulsion Possibilities", IRE Transactions on Military Electronics, Vol. MIL-3, Issue. 2, pp. 42-45, 1959. https://doi.org/10.1109/IRET-MIL.1959.5008132
  8. Adamovich, I.V., Subramaniam, V.V., and Rich, J.W., "Phenomenological Analysis of Shock-Wave Propagation in Weakly Ionized Plasmas", AIAA Journal, Vol. 36, No. 5, pp. 816-822, 1998. https://doi.org/10.2514/2.441
  9. Merriman S., Ploenjes, E., et. al., "Shock Wave Control by Nonequilibrium Plasmas in Cold Supersonic Gas Flow", AIAA Journal, Vol. 39, No. 8, pp. 1547-1552, 2001. https://doi.org/10.2514/2.1479
  10. Palm, P., Meyer, R., et al., "Nonequilibrium Radio Frequency Discharge Plasma Effect on Conical Shock Wave: M = 2.5 Flow", AIAA Journal, Vol. 41, No. 3, pp. 465-469, 2003. https://doi.org/10.2514/2.1968
  11. Capitelli, M., Colonna, G., Gorse, C., et al., "Transport Properties of High Temperature Air in Local Thermodynamic Equilibrium", the European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, Vol. 11, Issue. 2, pp. 279-289, 2000. https://doi.org/10.1007/s100530070094
  12. Eisazadeh-Far, K., Metghalchi, H. and Keck, J. C., "Thermodynamic Properties of Ionized Gases at High Temperatures", Journal of Energy Resources Technology, Vol. 133, Issue. 2, 022201, pp. 1-6, 2011.
  13. Colonna, G., D'Angola, A. and Capitelli, M., "Electronic Excitation and Isentropic Coefficients of High Temperature Planetary Atmosphere Plasmas", Physics of Plasma, Vol. 19, Issue. 7, 072115, pp. 1-9, 2012.
  14. Baritello, V., Porcelli, F. and Subba, F., "Plasma-wall boundary layers", Physical Review E, Vol. 60, pp. 4733-4742, 1999. https://doi.org/10.1103/PhysRevE.60.4733
  15. Fay, J.A., "Plasma Boundary Layers", United States Atomic Energy Comission, AD No. 294152, 1961.
  16. American Society for Testing and Materials, "Standard Practice for Measuring Plasma Arc Gas Enthalpy by Energy Balance", ASTM Standard Designation: E 341-96, 1996.
  17. McBride, B.J., Zehe, M.J. and Gordon, S., "NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species", NASA TP-2002-211556, 2002.
  18. McBride, B.J., Gordon, S. and Reno, M.A., "Thermodynamic Data for Fifty Reference Elements", NASA TP-3287/REV1, 2001.
  19. Gordon, S. and McBride, B.J., "Thermodynamic Data to 20000 K for Monatomic Gases", NASA TP-1999-208523, 1999.
  20. Svehla, R.A., "Transport Coefficients for the NASA Lewis Chemical Equilibrium Program", NASA TM-4647, 1995.
  21. McBride, B. J., and Gordon, S., Computer "Program for Calculating and Fitting Thermodynamic Functions", NASA RP-1271, 1992.
  22. Antsupov, A.V., "General Properties of Underexpanded and Overexpanded Supersonic Gas Jets", Soviet Physics Technical Physics, Vol. 19, No. 2, pp. 234-238, 1974.