DOI QR코드

DOI QR Code

Update on Distribution and Genetic Variability of Plum pox virus Strains in Bulgaria

  • 투고 : 2018.09.17
  • 심사 : 2018.12.02
  • 발행 : 2019.06.01

초록

Field surveys for Plum pox virus (PPV) infection were conducted in stone fruit orchards all over Bulgaria. In total, 1168 out of 3020 leaf samples from cultivated Prunus spp. and wildly growing P. cerasifera trees reacted positive for PPV in DASI-ELISA with the universal monoclonal antibody (MAb) 5B. Further ELISA analyses showed that 987 and 127 isolates belonged to PPV-M and PPV-D serotypes, respectively. The plum and P. cerasifera showed 82.0% and 50.5% levels of infection, respectively followed by the peach (40.0%) and the apricot (32.0%). Five hundred fifty one PPV isolates were further typed by IC-RT-PCR with PPV-Rec, -M and -D-specific primers, targeting (Cter)NIb-(Nter) CP genome region, as 125 isolates were sequenced. The results revealed the presence of PPV-Rec, PPV-M and PPV-D and mixed infections of these strains. PPV-Rec was the most prevalent strain (49.0%), followed by PPV-M (40.1%), while PPV-D was the less spread strain (8.2%). PPV-Rec was the most common strain in plums, including the eight "old-aged" trees from the region of the first Sharka discovery. PPV-M was the most prevalent strain in peach and apricot. Phylogenetic analyses on (Cter)NIb-(Nter)CP of the isolates were performed. PPV-Rec isolates formed a homogeneous group, while PPV-M isolates split into PPV-Ma and PPV-Mb subgroups. Five separated clades were formed by the analyzed PPV-D isolates. Nucleotide sequences of the partial CP coding region of the analyzed isolates revealed a slightly higher intra-strain genetic variability in PPV-Rec and PPV-M isolates, while that of PPV-D strain isolates was higher from the reported for these strains.

키워드

E1PPBG_2019_v35n3_243_f0001.png 이미지

Fig. 1. Phylogenetic tree of Plum pox virus strain Rec isolates from Bulgaria reconstructed from (Cter)NIb-(Nter)CP genomic region. The scale represents a distance of 0.05 substitutions per site. The tree was reconstructed by neighbour joining using the Kamura-2 parameter model of evolution. Only bootstrap values > 70% are shown. The isolates sequenced in this study are boldface. After the name of the isolate the original host is shown as plplum, pe-peach, ap-apricot and p.c-P. cerasifera.

E1PPBG_2019_v35n3_243_f0002.png 이미지

Fig. 2. Phylogenetic tree of Plum pox virus strain M isolates from Bulgaria reconstructed from (Cter)NIb-(Nter) CP genomic region. The scale represents a distance of 0.05 substitutions per site. The tree was reconstructed by neighbour joining using the Kamura-2 parameter model of evolution. Only bootstrap values > 70% are shown. The isolates sequenced in this study are boldface. After the name of the isolate the original host is shown as pl-plum, pe-peach, ap-apricot and p.c-P. cerasifera.

E1PPBG_2019_v35n3_243_f0003.png 이미지

Fig. 3. Phylogenetic tree of Plum pox virus strain D isolates from Bulgaria reconstructed from (Cter)NIb-(Nter)CP genomic region. The scale represents a distance of 0.05 substitutions per site. The tree was reconstructed by neighbour joining using the Kamura-2 parameter model of evolution. Only bootstrap values > 70% are shown. The isolates sequenced in this study are boldface. After the name of the isolate the original host is shown as pl-plum, pe-peach, apapricot and p.c-P. cerasifera.

Table 1. List of PPV isolates characterized in this study or available in GenBank

E1PPBG_2019_v35n3_243_t0001.png 이미지

Table 1. Continued

E1PPBG_2019_v35n3_243_t0002.png 이미지

Table 2. Incidence of PPV strains in particular Prunus spp. in Bulgaria

E1PPBG_2019_v35n3_243_t0003.png 이미지

Table 3. Mean nucleotide divergence levels in the partial coat protein gene of PPV-Rec isolates

E1PPBG_2019_v35n3_243_t0004.png 이미지

참고문헌

  1. Adamolle, C. 1993. The plum pox virus. Obtaining and partial characterization of polyclonal antibodies specific for nonstructural proteins. Approach of bio-ecolody of two epidemic serotypes. Ph.D. thesis. University of Bordeaux, Bordeaux, France.
  2. Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D. and Roosssinck, M. J. 2006. Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J. Virol. 80:8345-8350. https://doi.org/10.1128/JVI.00568-06
  3. Atanasoff, D. 1932. Plum pox: A new virus disease. Ann. Univ. Sofia Fac. Agric. Silvicul. 11:49-69.
  4. Bousalem, M., Candresse, T., Quiot-Douine, L. and Quiot, J. B. 1994. Comparison of three methods for assessing Plum pox virus variability: further evidence for the existence of two major groups of isolates. J. Phytopathol. 142:163-172. https://doi.org/10.1111/j.1439-0434.1994.tb04526.x
  5. Cambra, M., Asensio, M., Gorris, M. T., Perez, E., Camarasa, E., Garcia, J. A., Moya, J. J., Lopes-Abella, D., Vela, C. and Sanz, A. 1994. Detection of plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bulletin 24:569-577. https://doi.org/10.1111/j.1365-2338.1994.tb01070.x
  6. Candresse, T. and Cambra, M. 2006. Causal agent of sharka disease: Historical perspective and current status of Plum pox virus strains. EPPO Bulletin 36:239-246. https://doi.org/10.1111/j.1365-2338.2006.00980.x
  7. Candresse, T., Saenz, P., Garcia, J. A., Boscia, D., Navratil, M., Gorris, M. T. and Cambra, M. 2011. Analysis of the epitope structure of Plum pox virus coat protein. Phytopathology 101:611-619. https://doi.org/10.1094/PHYTO-10-10-0274
  8. Capote, N., Gorris, M. T., Martinez, M. C., Asensio, M., Olmos, A. and Cambra, M. 2006. Interference between D and M types of Plum pox virus in Japanese plum assessed by specific monoclonal antibodies and quantitative real-time reverse transcription-polymerase chain reaction. Phytopathology 96:320-325. https://doi.org/10.1094/PHYTO-96-0320
  9. Cervera, M. T., Riechmann, J. L., Martin, M. T. and Garcia, J. A. 1993. 3' terminal sequence of the Plum pox virus PS and o6 isolates: evidence for RNA recombination within the potyvirus group. J. Gen. Virol. 74: 329-334. https://doi.org/10.1099/0022-1317-74-3-329
  10. Chirkov, S., Ivanov, P., Sheveleva, A., Kudryavtseva, A., Prikhodko, Y. and Mitrofanova, I. 2016. Occurrence and characterization of Plum pox virus strain D isolates from European Russia and Crimea. Arch. Virol. 161:425-430. https://doi.org/10.1007/s00705-015-2658-x
  11. Dallot, S., Glasa, M., Jevremovic, D., Kamenova, I., Paunovic, S. and Labonne, G. 2011. Mediterranean and central-eastern European countries host viruses of two different clades of Plum pox virus strain M. Arch. Virol. 156:539-542. https://doi.org/10.1007/s00705-011-0918-y
  12. Deborre, G., Jelkman, W. and Maiss, E. 1995. Biological and molecular biological investigations of several Plum pox virus (PPV) isolates. Acta Hortic. 386:253-262. https://doi.org/10.17660/actahortic.1995.386.33
  13. Fanigliulo, A., Comes, S., Maiss, E., Piazzolla, P. and Crescenzi, A. 2003. The complete nucleotide sequence of Plum pox virus isolates from sweet (PPV-SwC) and sour (PPV-SoC) cherry and their taxonomic relationships within the species. Arch. Virol. 148:137-2153. https://doi.org/10.1007/s00705-002-0898-z
  14. Garcia, J. A., Glasa, M., Cambra, M. and Candresse, T. 2013. Plum pox virus and sharka: a model potyvirus and a major disease. Mol. Plant Pathol. 15:226-241. https://doi.org/10.1111/mpp.12083
  15. Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39:157-186. https://doi.org/10.1146/annurev.phyto.39.1.157
  16. Glasa, M., Maria-Jeanne, V., Labonne, G., Subr, Z., Kudela O. and Quiot, J.-B. 2002. A natural population of recombinant Plum pox virus is viable and competitive under field conditions. Eur. J. Plant Pathol. 108:843-853. https://doi.org/10.1023/A:1021294221878
  17. Glasa, M., Palkovics, L., Kominek, P., Labonne, G., Pittnerova, S., Kudela, O., Candresse, T. and Subr, Z. 2004. Geographically and temporally distant natural recombinant isolates of Plum pox virus (PPV) are genetically very similar and form a unique PPV subgroup. J. Gen. Virol. 85:2671-2681. https://doi.org/10.1099/vir.0.80206-0
  18. Glasa, M., Paunovic, S., Jevremovic, D., Myrta, A., Pittnerova, S. and Candresse, T. 2005. Analysis of recombinant Plum pox virus (PPV) isolates from Serbia confirms genetic homogeneity and supports a regional origin for PPV-Rec subgroup. Arch. Virol. 150:2051-2060. https://doi.org/10.1007/s00705-005-0548-3
  19. Glasa, M., Svoboda, J. and Novakova, S. 2007. Analyses of molecular and biological variability of zucchini yellow mosaic virus isolates in Slovakia and Czech Republic. Virus Genes 35:415-421. https://doi.org/10.1007/s11262-007-0101-4
  20. James, D. and Varga, A. 2005. Nucleotide sequence analysis of Plum pox virus isolate W3174: evidence of a new strain. Virus Res. 110:143-150. https://doi.org/10.1016/j.virusres.2005.02.004
  21. James, D., Varga, A. and Sanderson, D. 2013. Genetic diversity of Plum pox virus: strains, diversity and related challenges for control. Can. J. Plant Pathol. 35:431-441. https://doi.org/10.1080/07060661.2013.828100
  22. Jevremovic, D. 2012. Distribution of PPV-D and PPV-Rec strains of Plum pox virus in Serbia and the dynamics of their spread in plum orchard. Ph.D. thesis. University of Belgrade, Belgrade, Serbia.
  23. Jridi, C., Martin, J. F., Marie-Jeanne, V., Labonne, G. and Blanc, S. 2006. Distinct viral populations differentiate and evolve independently in a single perennial host plant. J. Virol. 80:2349-2357. https://doi.org/10.1128/JVI.80.5.2349-2357.2006
  24. Kamenova, I. 2014. A recombinant strain of Plum pox virus in peach in Bulgaria. J. Plant Pathol. 96:411-414.
  25. Kamenova, I., Lohuis, D. and Peters, D. 2001. Comparative amino-acid analyses of coat proteins of Plum pox virus isolates. Biotechnol. Biotechnol. Equip. 1:45-50. https://doi.org/10.1080/13102818.2001.10819103
  26. Kamenova, I., Dallot, S., Bozkova, V. and Milusheva, S. 2011. First report of Plum pox virus recombinant strain on peach in Bulgaria. Plant Dis. 95:1320.
  27. Kamenova, I., Mavrodieva, V., Levy, L., Milusheva, S., Dragoiski, K., Borisova, A. and Stefanova, B. 2013. Plum pox virus survey of sweet and sour cherry in Bulgaria. Bulg. J. Agric. Sci. 19:732-736.
  28. Kamenova, I., Borissova, A., Dragoyski, K., Milusheva, S., Stefanova, B., Dallot, S. and Glasa, M. 2015. Plum pox virus strains in Bulgaria. Acta Hortic. 1063:47-54. https://doi.org/10.17660/actahortic.2015.1063.5
  29. Kamenova, I., Tasheva-Terzieva, E., Dragoyski, K. and Stefanova, B. 2017. Spread and competitiveness of Plum pox virus: Rec and -D strains in experimental plum orchard. J. Phytopathol. 165:602-609. https://doi.org/10.1111/jph.12598
  30. Maiss, E., Casper, R., Deborre, G. and Jelkmann, W. 1995. Complete nucleotide sequence of a plum pox potyvirus isolate (PPV-SC) deriving from sour cherries and influence of a coat protein sequence motif on aphid transmission. Acta Hortic. 386:340-345. https://doi.org/10.17660/actahortic.1995.386.46
  31. Matic, S., Al Rwahnih, M. and Myrta, A. 2006. Diversity of Plum pox virus isolates in Bosnia and Herzegovina. Plant Pathol. 55:11-17. https://doi.org/10.1111/j.1365-3059.2005.01309.x
  32. Matic, S., Elmaghraby, I., Law, V., Varga, A., Reed, C., Myrta, A. and James, D. 2011. Serological and molecular characterization of isolates of Plum pox virus strain EL Amar to better understand its diversity, evolution and unique geographical distribution. J. Plant Pathol. 93:303-310.
  33. Mikec, I., Kajic, V., Krajacic, M. and Skoric, D. 2008. Occurrence and distribution of Plum pox virus in Croatia. Acta Hortic. 781:193-197. https://doi.org/10.17660/actahortic.2008.781.28
  34. Milusheva, S. 2008. Biological, serological and molecular characteristic of Plum pox virus on plum. Ph.D. thesis. Fruit Growing Institute, Plovdiv, Bulgaria.
  35. Navratil, M., Safarova, D., Gadiou, S., Franova, J., Kucerova, L. and Talacko, L. 2008. The partial molecular characterization of Plum pox virus infecting sweet cherry trees in the Czech Republic. Acta Hortic. 781:203-208. https://doi.org/10.17660/actahortic.2008.781.30
  36. Palkovics, L., Burgyan, J. and Balazs, E. 1993. Comparative sequence analysis of four complete primary structures of Plum pox virus strains. Virus Genes 7:339-347. https://doi.org/10.1007/BF01703390
  37. Predajna, L., Subr, Z., Candresse, T. and Glasa, M. 2012. Evaluation of the genetic diversity of Plum pox virus in a single plum tree. Virus Res. 167:112-117. https://doi.org/10.1016/j.virusres.2012.04.002
  38. Saenz, P., Cervera, M. T., Dallot, S., Quiot, L., Quiot, J. B., Riechmann, J. L. and Garcia, J. A. 2000. Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K(1). J. Gen. Virol. 81:557-566. https://doi.org/10.1099/0022-1317-81-3-557
  39. Scholthof, K. B., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C. and Foster, G. D. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12:938-954. https://doi.org/10.1111/j.1364-3703.2011.00752.x
  40. Sheveleva, A., Ivanov, P., Gasanova, T., Osipov, G. and Chirkov, S. 2018. Sequence analyses of Plum pox virus strains C isolates from Russia revealed prevalence if the D96E mutation in the universal epitope and interstrain recombination events. Viruses 10:450. https://doi.org/10.3390/v10090450
  41. Sihelska, N., Glasa, M. and Subr, Z. 2016. Host preference of the major strains of Plum pox virus-Opinions based on regional and world-wide sequence data. J. Integr. Agric. 16:510-515. https://doi.org/10.1016/s2095-3119(16)61356-4
  42. Subr, Z. and Glasa, M. 1999. Plum pox virus capsid protein mobility in SDS-polyacrylamide gel electrophoresis. Acta Virol. 43:259-262.
  43. Subr, Z., Pittnerova, S. and Gasa, M. 2004. A simplified TR-PCRbased detection of recombinant Plum pox virus isolates. Acta Virol. 48:173-176.
  44. Subr, Z., Ryslava, H. and Kollewrova, E. 2007. Electrophoretic mobility of the capsid protein of the Plum pox virus strain PPV-Rec indicates its partial phosphorylation. Acta Virol. 51:135-138.
  45. Subr, Z. and Glasa, M. 2008. Plum pox virus variability detected by the advanced analytical methods. Acta Virol. 52:75-89.
  46. Subr, Z., Kamencayova, M., Novakova, S., Nagyova, A., Nosek, J. and Glasa, M. 2010. A single amino acid mutation alters the capsid protein electrophoretic double-band phenotype of the Plum pox virus strain PPV-Rec. Arch. Virol. 155:1151-1155. https://doi.org/10.1007/s00705-010-0677-1
  47. Subr, Z. and Glasa, M. 2013. Unfolding the secrets of Plum pox virus: from epidemiology to genomics. Acta Virol. 57:217-228. https://doi.org/10.4149/av_2013_02_217
  48. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetic analyses version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  49. Teycheney, P. Y., Tavert, G., Delbos, R., Ravelonandro, M. and Dunez, J. 1989. The complete nucleotide sequence of Plum pox virus RNA (strain D). Nucleic Acids Res. 17:10115-10116. https://doi.org/10.1093/nar/17.23.10115
  50. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  51. Wei, T. Y., Yang, J. G., Liao, F. R., Gao, F. L., Lu, L. M., Zhang, X. T., Li, F., Wu, Z. J., Lin, Q. Y., Xie, L. H. and Lin, H. X. 2009. Genetic diversity and population structure of rice stripe virus in China. J. Gen. Virol. 90:1025-1034. https://doi.org/10.1099/vir.0.006858-0
  52. Yankulova, M., Kamenova, I., Stoev, A. and Gabova, R. 1990. Plum pox virus on peach in Bulgaria. Plant Sci. 27:42-47 (in Bulgarian).