DOI QR코드

DOI QR Code

Clinical Effect through Histological Characteristics of Focal Ischemia Region

뇌허혈성 부위의 조직학적 특성을 통한 임상적 영향

  • Lee, Tae-Hoon (Dept. of Emergency Medical Service, Namseoul university)
  • 이태훈 (남서울대학교 응급구조학과)
  • Received : 2019.11.18
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

Mouse embryonic stem cell could show an substitutional materials of cells of neuron differentiation, positively increasing their effectiveness in the treatment of nervous symptom. We examined that mouse embryonic stem cells (mESCs) can be induced to undergo neuronal differentiation. After neuronal induction, the phenotype of mESCs changed towards neuronal morphology and mESCs were injected into the lateral ventricle of the experimental animal brain. Transplanted cells migrated to various parts of the brain and ischemic brain injury by middle cerebral artery occlusion (MCAO) increased their migration to the injured cortex. Intracerebral grafting of mESCs mostly improve sensory and motor nervous system of neurological injury in focal cerebral rats.

마우스 배아 줄기 세포는 신경 세포 분화가 가능한 세포의 대안적인 공급원이 될 수 있으며 잠재적으로 신경계 질환의 치료에 유용하게 사용될 수있다. 우리는 배아 줄기 세포 (ESCs)가 신경 분화를 유도하도록 유도 될 수 있는지를 조사했다. 신경 세포 유도 후, mESC의 표현형이 뉴런의 형태학으로 변하였고, mESCs는 실험쥐 뇌의 측 뇌실로 주입되었다. 이식 된 세포는 뇌의 여러 부위로 이동하였고 중대뇌동맥 결찰에 의한 허혈성 뇌혈관 손상부위에 이식된 줄기세포군이 손상된 피질부위로 집중적으로 이동하여 손상복구 기전을 증가시켰다. mESCs의 뇌내 이식은 MCAO 쥐의 기능적 결손의 감각 및 운동 회복을 유의 적으로 향상시킨다. 이러한 데이터는 이식 된 mESC가 허혈성 미세 환경에서 생존, 이동 및 분화하고 쥐에서 뇌졸중 후 신경 기능 회복을 향상 시킨다는 것을 나타낸다. 따라서 우리는 mESC의 이식이 인간 신경계 손상 및 퇴행성 장애에 대한 강력한 이식 치료법을 제공 할 것으로 기대한다.

Keywords

References

  1. W. Park, M. A. Eglitis & M. M. Mouradian. (2001). Protection of nigral neurons by GDNF-engineered marrow cell transplantation. Neuroscience Research, 40, 315-323. DOI : 10.1016/s0168-0102(01)00242-5
  2. H. Jin, J. E. Carter, G. W. Huntley, E. H. Schuchman. (2002). Intracerebral transplantation of mesenchymal stem cells into acid sphinomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. Journal of Clinical Investigatin, 109, 1183-1191. DOI : 10.1172/jci200214862
  3. G. J. Hausman & D. R. Campion, (1984). Histology of the stroma in developing rat subcutaneous adipose tissue. Journal of Animal Science, 55, 1336-1342. DOI : 10.2527/jas1982.5561336x
  4. E. Z. Longa, P. R. Weinstein, S. Carlson & R. Cummins. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20, 84-91. DOI : 10.1161/01.str.20.1.84
  5. Y. D. Halvorsen, D. Franklin & A. L. Bond. (2001). Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering, 7, 729-741. DOI : 10.1089/107632701753337681
  6. P. A. Zuk, M. Zuh & H. Mizuno. (2001). Multilineage cells from human adipose tissue: implication for cell-based therapies. Tissue Engineering, 209-226. DOI : 10.1089/107632701300062859
  7. G. R. Erickson, J. M. Gimble, D. M. Franklin, H. E. Rice, H. Awad & F. Guilak. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochemisty & Biophysics Research Communication, 290, 763-769. DOI : 10.1201/b18527-13
  8. M. Safford, C. Hicok & S. D. Safford. (2002). Neurogenic differentiation of murine and human adipose-dervied stromal cells, Biochemistry & Biophysics Research Communication, 294, 371-379. DOI : 10.1016/s0006-291x(02)00469-2
  9. C. W. Patrick. (2000). Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Seminar Surgical Oncology, 19, 302-311. DOI : 10.1002/1098-2388(200010/11)19:3<302::aid-ssu12>3.0.co;2-s
  10. E. Mezey, J. Chandross, G. Harta, R. A. Maki, & S. R. Mcerche. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290, 1779-1782. DOI : 10.1126/science.290.5497.1779
  11. T. Brazelton, F. M. Rossi, G. I. Eshet & H. M. Blau. (2000). From marrow to brain; expression of neuronal phenotypes in adult mice. Science, 209, 1775-1779. DOI : 10.1126/science.290.5497.1775
  12. Y. Li, M. Chopp & J. Chen. (2000). Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. Journal of Cerebral Blood Flow Metabolism, 20, 1311-1319. DOI : 10.1097/00004647-200009000-00006
  13. F. C. Barone & G. Z. Feuerstein. (1999). Inflammatory mediators and stroke: new opportunities for novel terapeutics. Journal of Cerebral Blood Flow Metabolism, 19, 819-834. DOI : 10.1097/00004647-199908000-00001
  14. A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia & O. Lindvall. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8, 963-970. DOI : 10.1038/nm747
  15. K. Ide, A. Horn & N. H. Secher. (1999). Cerebral metabolic response to submaximal exerecise. Journal of Applied Phyiology, 87, 1604-1608. DOI : 10.1152/jappl.1999.87.5.1604
  16. Y. H. Park & Y. M. Jang. (2018). The Study on Knowledge, Attitude and Self-efficacy of the Cardiocerebrovascular Disease among the Middle-aged. Journal of Industrial Convergence, 16(4), 1-8. https://doi.org/10.22678/JIC.2018.16.4.001
  17. S. K. Kim, M. R. Eom & O. M. Kim. (2019). Convergence Study of Nursing Simulation Training for Patient with Schizophrenia : A Systematic Review. Journal of Industrial Convergence, 17(2), 45-52. https://doi.org/10.22678/JIC.2018.17.2.045