DOI QR코드

DOI QR Code

Recent Development of Computer Vision Technology to Improve Capsule Endoscopy

  • Park, Junseok (Digestive Disease Center, Institute for Digestive Research, Department of Internal Medicine, Soonchunhyang University College of Medicine) ;
  • Hwang, Youngbae (Intelligent Image Processing Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Yoon Ju-Hong (Intelligent Image Processing Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Park, Min-Gyu (Intelligent Image Processing Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kim, Jungho (Intelligent Image Processing Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Lim, Yun Jeong (Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine) ;
  • Chun, Hoon Jai (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine)
  • 투고 : 2018.10.08
  • 심사 : 2018.11.25
  • 발행 : 2019.07.31

초록

Capsule endoscopy (CE) is a preferred diagnostic method for analyzing small bowel diseases. However, capsule endoscopes capture a sparse number of images because of their mechanical limitations. Post-procedural management using computational methods can enhance image quality. Additional information, including depth, can be obtained by using recently developed computer vision techniques. It is possible to measure the size of lesions and track the trajectory of capsule endoscopes using the computer vision technology, without requiring additional equipment. Moreover, the computational analysis of CE images can help detect lesions more accurately within a shorter time. Newly introduced deep leaning-based methods have shown more remarkable results over traditional computerized approaches. A large-scale standard dataset should be prepared to develop an optimal algorithms for improving the diagnostic yield of CE. The close collaboration between information technology and medical professionals is needed.

키워드

참고문헌

  1. Shim KN, Jeon SR, Jang HJ, et al. Quality indicators for small bowel capsule endoscopy. Clin Endosc 2017;50:148-160. https://doi.org/10.5946/ce.2017.030
  2. Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol 2015;12:172-186. https://doi.org/10.1038/nrgastro.2015.13
  3. Jia X, Meng MQ. Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2017 Jul 11-15; Seogwipo, Korea. Piscataway (NY): IEEE; 2017. p. 3154-3157.
  4. Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys 2017;44:1379-1389. https://doi.org/10.1002/mp.12147
  5. Obukhova N, Motyko A, Pozdeev A, Timofeev B. Review of noise reduction methods and estimation of their effectiveness for medical endoscopic images processing. In: 2018 22nd Conference of Open Innovations Association (FRUCT); 2018 May 15-18; Jyvaskyla, Finland. Piscataway (NY): IEEE; 2018. p. 204-210.
  6. Gopi VP, Palanisamy P, Niwas SI. Capsule endoscopic colour image denoising using complex wavelet transform. In: Venugopal KR, Patnaik LM, eds. Wireless networks and computational intelligence. Berlin: Springer-Verlag Berlin Heidelberg; 2012. p. 220-229.
  7. Liu H, Lu W, Meng MQ. De-blurring wireless capsule endoscopy images by total variation minimization. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing; 2011 Aug 23-26; Victoria, Canada. Piscataway (NY): IEEE; 2011. p. 102-106.
  8. Peng L, Liu S, Xie D, Zhu S, Zeng B. Endoscopic video deblurring via synthesis. In: 2017 IEEE Visual Communications and Image Processing (VCIP); 2017 Dec 10-13; St. Petersburg (FL), USA. Piscataway (NY): IEEE; 2017. p. 1-4.
  9. Duda K, Zielinski T, Duplaga M. Computationally simple super-resolution algorithm for video from endoscopic capsule. In: 2008 International Conference on Signals and Electronic Systems; 2008 Sep 14-17; Krakow, Poland. Piscataway (NY): IEEE; 2008. p. 197-200.
  10. Hafner M, Liedlgruber M, Uhl A. POCS-based super-resolution for HD endoscopy video frames. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems; 2013 Jun 20-22; Porto, Portugal. Piscataway (NY): IEEE; 2013. p. 185-190.
  11. Hafner M, Liedlgruber M, Uhl A, Wimmer G. Evaluation of super-resolution methods in the context of colonic polyp classification. In: 2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI); 2014 Jul 18-20; Klagenfurt, Austria. Piscataway (NY): IEEE; 2014. p.1-6.
  12. Singh S, Gulati T. Upscaling capsule endoscopic low resolution images. International Journal of Advanced Research in Computer Science and Software Engineering 2014;4:40-46.
  13. Wang Y, Cai C, Zou YX. Single image super-resolution via adaptive dictionary pair learning for wireless capsule endoscopy image. In: 2015 IEEE International Conference on Digital Signal Processing (DSP); 2015 Jul 21-24; Singapore. Piscataway (NY): IEEE; 2015. p. 595-599.
  14. Karargyris A, Bourbakis N. Three-dimensional reconstruction of the digestive wall in capsule endoscopy videos using elastic video interpolation. IEEE Trans Med Imaging 2011;30:957-971. https://doi.org/10.1109/TMI.2010.2098882
  15. Fan Y, Meng MQ, Li B. 3D reconstruction of wireless capsule endoscopy images. Conf Proc IEEE Eng Med Biol Soc 2010;2010:5149-5152.
  16. Park MG, Yoon JH, Hwang Y. Stereo matching for wireless capsule endoscopy using direct attenuation model. In: 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018; 2018 Sep 20; Granada, Spain. Cham: Springer; 2018. p. 48-56.
  17. Marya N, Karellas A, Foley A, Roychowdhury A, Cave D. Computerized 3-dimensional localization of a video capsule in the abdominal cavity: validation by digital radiography. Gastrointest Endosc 2014;79:669-674. https://doi.org/10.1016/j.gie.2013.11.022
  18. Shen Y, Guturu PP, Buckles BP. Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features. IEEE Trans Inf Technol Biomed 2012;16:98-105. https://doi.org/10.1109/TITB.2011.2171977
  19. Zhou R, Li B, Zhu H, Meng MQ. A novel method for capsule endoscopy video automatic segmentation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3-7; Tokyo, Japan. Piscataway (NY): IEEE; 2013. p. 3096-3101.
  20. Spyrou E, Iakovidis DK. Video-based measurements for wireless capsule endoscope tracking. Meas Sci Technol 2014;25:015002. https://doi.org/10.1088/0957-0233/25/1/015002
  21. Bao G, Mi L, Pahlavan K. Emulation on motion tracking of endoscopic capsule inside small intestine. In: 14th International Conference on Bioinformatics and Computational Biology; 2013 Jul; Las Vegas (NV), USA.
  22. Mahmoud N, Cirauqui I, Hostettler A, et al. ORBSLAM-based endoscope tracking and 3D reconstruction. In: Peters T, Guang-Zhong Y, Navab N, eds. Computer-assisted and robotic endoscopy. Cham: Springer International Publishing; 2017. p. 72-83.
  23. Mahmoud N, Hostettler A, Collins T, Soler L, Doignon C, Montiel JMM. SLAM based quasi dense reconstruction for minimally invasive surgery scenes. arXiv:1705.09107.
  24. Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots. Int J Intell Robot Appl 2017;1:399-409. https://doi.org/10.1007/s41315-017-0036-4
  25. Faigel DO, Baron TH, Adler DG, et al. ASGE guideline: guidelines for credentialing and granting privileges for capsule endoscopy. Gastrointest Endosc 2005;61:503-505. https://doi.org/10.1016/S0016-5107(04)02781-6
  26. Zheng Y, Hawkins L, Wolff J, Goloubeva O, Goldberg E. Detection of lesions during capsule endoscopy: physician performance is disappointing. Am J Gastroenterol 2012;107:554-560. https://doi.org/10.1038/ajg.2011.461
  27. Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai YH. Automated polyp detection in colon capsule endoscopy. IEEE Trans Med Imaging 2014;33:1488-1502. https://doi.org/10.1109/TMI.2014.2314959
  28. Kumar R, Zhao Q, Seshamani S, Mullin G, Hager G, Dassopoulos T. Assessment of Crohn's disease lesions in wireless capsule endoscopy images. IEEE Trans Biomed Eng 2012;59:355-362. https://doi.org/10.1109/TBME.2011.2172438
  29. Chen G, Bui TD, Krzyzak A, Krishnan S. Small bowel image classification based on Fourier-Zernike moment features and canonical discriminant analysis. Pattern Recognition and Image Analysis 2013;23:211-216. https://doi.org/10.1134/S1054661813020089
  30. Szczypinski P, Klepaczko A, Pazurek M, Daniel P. Texture and color based image segmentation and pathology detection in capsule endoscopy videos. Comput Methods Programs Biomed 2014;113:396-411. https://doi.org/10.1016/j.cmpb.2012.09.004
  31. Fu Y, Zhang W, Mandal M, Meng MQ. Computer-aided bleeding detection in WCE video. IEEE J Biomed Health Inform 2014;18:636-642. https://doi.org/10.1109/JBHI.2013.2257819
  32. Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest Endosc 2014;80:877-883. https://doi.org/10.1016/j.gie.2014.06.026
  33. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NY): IEEE; 2016. p. 779-788.
  34. Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 2018;155:1069-1078.e8. https://doi.org/10.1053/j.gastro.2018.06.037
  35. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NY): IEEE; 2016. p. 770-778.
  36. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
  37. Zou Y, Li L, Wang Y, Yu J, Li Y, Deng WJ. Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In: 2015 IEEE International Conference on Digital Signal Processing (DSP); 2015 Jul 21-24; Singapore. Piscataway (NY): IEEE; 2015. p. 1274-1278.
  38. Jia X, Meng MQ. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016 Aug 16-20; Orlando (FL), USA. Piscataway (NY): IEEE; 2016. p. 639-642.
  39. Hwang Y, Park J, Lim YJ, Chun HJ. Application of artificial intelligence in capsule endoscopy: where are we now? Clin Endosc 2018;51:547-551. https://doi.org/10.5946/ce.2018.173

피인용 문헌

  1. Design and Research of Interactive Animation of Immersive Space Scene Based on Computer Vision Technology vol.2021, 2019, https://doi.org/10.1155/2021/5554879
  2. Development and Verification of a Deep Learning Algorithm to Evaluate Small-Bowel Preparation Quality vol.11, pp.6, 2019, https://doi.org/10.3390/diagnostics11061127
  3. X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices vol.7, pp.6, 2019, https://doi.org/10.1021/acsbiomaterials.1c00225
  4. Kvasir-Capsule, a video capsule endoscopy dataset vol.8, 2019, https://doi.org/10.1038/s41597-021-00920-z
  5. Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-81686-7