Acknowledgement
Supported by : Thailand Research Fund (TRF)
References
- Adachi, T., Oka, F., Hirata, T., Hashimoto, T., Nagaya, J., Mimura, M. and Pradhan, T.B.S. (1995), "Stress-strain behavior and yielding characteristics of eastern Osaka clay", Soils Found., 35(3), 1-13. https://doi.org/10.3208/sandf.35.1.
- Anagnostopoulos, A.G., Kalteziotis, N. and Tsiambaos, G.K. (1991), "Geotechnical properties of the Carinth Canal marls", Geotech. Geol. Eng., 9(1), 1-26. https://doi.org/10.1007/BF00880981.
- Baudet, B. and Stallebrass, S. (2004), "A constitutive model for structured clays", Geotechnique, 54(4), 269-278. https://doi.org/10.1680/geot.2004.54.4.269.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural soils", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
- Callisto, L. and Rampello, S. (2004), "An interpretation of structural degradation for three natural clays", Can. Geotech. J., 41(3), 392-407. https://doi.org/10.1139/t03-099.
- Carter, J.P. and Liu, M.D. (2005), "Review of the Structure Cam Clay model. soil constitutive models: evaluation, selection, and calibration", ASCE Geotech. Special Publ., 128, 99-132.
- Carter, J.P., Airey, D.W. and Fahey, M. (2000), A Review of Laboratory Testing of Calcareous Soils, in Engineering for Calcareous Sediments, 401-431.
- Chai, J.C., Shen, S.L., Zhu, H.H. and Zhnag, X.L. (2004), "Land subsidence due to groundwater drawdown in Shanghai", Geotechnique, 54(2), 143-147. https://doi.org/10.1680/geot.2004.54.2.143
- Chen, B., Xu, Q. and Sun, D. (2014), "An elastoplastic model for structured clays", Geomech. Eng., 7(2), 213-231. https://doi.org/10.12989/gae.2014.7.2.213.
- Cheng, X. and Wang, J. (2016), "An elastoplastic bounding surface model for the cyclic undrained behavior of saturated soft clays", Geomech. Eng., 11(3), 325-343. https://doi.org/10.12989/gae.2016.11.3.325.
- Cotecchia, F. and Chandler, R.J. (2000), "A general framework for the mechanical behaviour of clays", Geotechnique, 50(4), 431-447. https://doi.org/10.1680/geot.2000.50.4.431
- Dafalias, Y.F. and Popov, E.P. (1975), "A model of non-linearly hardening materials for complex loading", Acta Mechanica, 21(3), 173-192. https://doi.org/10.1007/BF01181053.
- Eigenbrod, K.D. and Burak, J.B. (1991), "Effective stress paths and pore-pressure responses during undrained shear along the bedding planes of varved Fort William clay", Can. Geotech. J., 28(6), 804-811. https://doi.org/10.1139/t91-097.
- Gajo, A. and Muir Wood, D. (2001), "A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behavior", Int. J. Numer. Anal. Meth. Geomech., 25(3), 207-241. https://doi.org/10.1002/nag.126.
- Gens, A. and Nova, R. (1993), "Conceptual bases for constitutive model for bonded soil and weak rocks", Proceedings of the International Symposium on Geotechnical Engineering of Hard Soil-Soft Rocks, Athens, Greece, September.
- Gylland, A., Long, M., Emdal, A. and Sandven, R. (2013), "Characterisation and engineering properties of Tiller clay", Eng. Geol., 164, 86-100. https://doi.org/10.1016/j.enggeo.2013.06.008.
- Hashiguchi, K. (1980), "Constitutive equations of elastoplastic materials with elastic-plastic translation", J. Appl. Mech., 47, 266-272. https://doi.org/10.1115/1.3153653.
- Herbstova, V. and Herle, I. (2009), "Structure transitions of clay fills in North-Western Bohemia", Eng. Geol., 104(3-4), 157-166. https://doi.org/10.1016/j.enggeo.2008.10.001
- Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. and Katkan, W. (2007), "Assessment of engineering properties of Bangkok clay", Can. Geotech. J., 44(2), 173-187. https://doi.org/10.1139/t06-101.
- Kavvadas, M. and Amorosi, A. (2000), "A constitutive model for structured soils", Geotechnique, 50(3), 263-273. https://doi.org/10.1680/geot.2000.50.3.263.
- Kim, S.R. (1991), "Stress-strain behaviour and strength characteristics of lightly overconsolidated clays", Ph.D. Dissertation, Asian Institute of Technology, Bangkok, Thailand.
- Leroueil, S. and Vaughan, P.R. (1990), "The general and congruent effects of structure in natural soils and week rock", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467.
- Liu, M.D. and Carter, J.P. (1999), "Virgin compression of structured soils", Geotechnique, 49(1), 43-57. https://doi.org/10.1680/geot.1999.49.1.43.
- Liu, M.D. and Carter, J.P. (2000), "Modeling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
- Liu, M.D. and Carter, J.P. (2002), "A structured Cam Clay model", Can. Geotech. J., 39(6), 1313-1332. https://doi.org/10.1139/t02-069.
- Liu, M.D. and Carter, J.P. (2003), "Volumetric deformation of natural clays", Int. J. Geomech., 3(2), 236-252. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(236).
- Liu, M.D., Carter, J.P., Horpibulsuk, S and Liyanapathirana, D. (2006), "Modelling the behaviour of cemented clay", Geotech. Special Publ., 65-72.
- Locat, J. and Lefebvre, G. (1985), "The compressibility and sensitivity of an artificially sedimented clay soil: The Grande-Baleine marine clay, Quebec", Mar. Geotechnol., 6(1), 1-27. https://doi.org/10.1080/10641198509388178
- Mitchell, R.J. (1970), "On the yielding and mechanical strength of Leda clays", Can. Geotech. J., 7(3), 297-312. https://doi.org/10.1139/t70-036.
- Ouria, A. (2017), "Disturbed state concept-based constitutive model for structured soils", Int. J. Geomech., 17(7), 04017008. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000883.
- Park, D. (2016), "Rate of softening and sensitivity for weakly cemented sensitive clays", Geomech. Eng., 10(6), 827-836. https://doi.org/10.12989/gae.2016.10.6.827
- Rampello, S. and Callisto, L. (1998), "A study on the subsoil of the tower of Pisa based on results from standard and high-quality samples", Can. Geotech. J., 35(6), 1074-1092. https://doi.org/10.1139/t98-055.
- Roscoe, K.H. and Burland, J.B. (1968), "On the generalised stress-strain behaviour of wet clay", Eng. Plasticity, 535-609.
- Roscoe, K.H. and Schofield, A.N. (1963). "Mechanical behaviour of an idealised wet clay", Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany.
- Rouainia, M. and Muir Wood, D. (2000), "A kinematic hardening constitutive model for natural clays with loss of structure", Geotechnique, 50(2), 153-164. https://doi.org/10.1680/geot.2000.50.2.153.
- Sangrey, D.A. (1972), "Naturally cemented sensitive soils", Geotechnique, 22(1), 139-152. https://doi.org/10.1680/geot.1972.22.1.139.
- Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., 117(9), 1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288).
- Schofield, A.N. and Wroth, C.P. (1968), Critical State Soil Mechanics, McGraw-Hill, London, U.K.
- Shen, S.L. and Xu, Y.S. (2011), "Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai", Can. Geotech. J., 48(9), 1378-1392. https://doi.org/10.1139/t11-049.
- Shen, S.L., Ma, L., Xu, Y.S. and Yin, Z.Y. (2013), "Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai", Can. Geotech. J., 50(11), 1129-1142. https://doi.org/10.1139/cgj-2013-0042.
- Sivakumar, V., Doran, I.G. and Graham, J. (2002), "Particle orientation and its influence on the mechanical behaviour of isotropically consolidated reconstituted clay", Eng. Geol., 66(3-4), 197-202. https://doi.org/10.1016/S0013-7952(02)00040-6.
- Smith, P.R. (1992), "The behaviour of natural high compressibility clays with special reference to consolidation on soft ground", Ph.D. Thesis, University of London, London, U.K.
- Suebsuk, J., Horpibulsuk, S. and Liu, M.D. (2011), "A critical state model for overconsolidated structured clay", Comput. Geotech., 38(5), 648-658. https://doi.org/10.1016/j.compgeo.2011.03.010.
- Sun, D., Chen, L., Zhang, J. and Zhou, A. (2015), "Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions", Geomech. Eng., 9(5), 669-685. https://doi.org/10.12989/gae.2015.9.5.669
- Terzaghi, K. (1953), "Fifty years of subsoil exploration", Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, Switzerland, August.
- Yao, Y.P. and Zhou, A.N. (2013), "Non-isothermal unified hardening model: A thermo-elastoplastic model for clay", Geotechnique, 63(15), 1328-1345. http://dx.doi.org/10.1680/geot.13.P.035.
- Yao, Y.P., Hou, W. and Zhou, A.N. (2009), "UH model: Threedimensional unified hardening model for overconsolidated clays", Geotechnique, 59(5), 451-469. https://doi.org/10.1680/geot.2007.00029.
- Yao, Y.P., Sun, D.A. and Matsuoka, H. (2008), "A unified constitutive model for both clay and sand with hardening parameter independent on stress path", Comput. Geotech., 35(2), 210-222. https://doi.org/10.1016/j.compgeo.2007.04.003.
- Zhang, H., Chen, Q., Chen, J. and Wang, J. (2017), "Application of a modified structural clay model considering anisotropy to embankment behavior", Geomech. Eng., 13(1), 79-97. https://doi.org/10.12989/gae.2017.13.1.079.
- Zhu, E.Y. and Yao, Y.P. (2015), "Structured UH model for clays", Transportation Geotech. 3, 68-79. https://doi.org/10.1016/j.trgeo.2015.03.003.