DOI QR코드

DOI QR Code

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool (Advanced Research Laboratory for Multifunctional Light Weight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto) ;
  • Behdinan, Kamran (Advanced Research Laboratory for Multifunctional Light Weight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto)
  • Received : 2019.01.07
  • Accepted : 2019.04.13
  • Published : 2019.06.10

Abstract

Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Keywords

Acknowledgement

Supported by : Natural Sciences and Engineering Research Council of Canada(NSERC)

References

  1. Al-Mashat, L., Shin, K., Kalantar-zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., Kaner, R.B., Li, D., Gou, X., Ippolito, S.J. and Wlodarski, W., (2010), "Graphene/polyaniline nanocomposite for hydrogen sensing", The J. Phys. Chem. C, 114, 16168-16173. https://doi.org/10.1021/jp103134u
  2. Alian, A.R., Dewapriya, M.A.N. and Meguid, S.A. (2017), "Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites", Mater. Des., 124, 47-57. https://doi.org/10.1016/j.matdes.2017.03.052
  3. Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881. https://doi.org/10.1016/j.compstruct.2013.07.002
  4. Arani, A.G., Zarei, M.S., Mohammadimehr, M., Arefmanesh, A. and Mozdianfard, M.R. (2011), "The thermal effect on buckling analysis of a DWCNT embedded on the Pasternak foundation", Phys. E, Low-dimensional Syst. Nanostruct., 43(9), 1642-1648. https://doi.org/10.1016/j.physe.2011.05.014
  5. Arani, A.G., Kolahchi, R., Barzoki, A.A.M., Mozdianfard, M.R. and Farahani, S.M.N. (2013), "Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method", Proceed. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 227(4), 862-879. https://doi.org/10.1177/0954406212453808
  6. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872
  7. Craft, W.J. and Christensen, R.M. (1981), "Coefficient of thermal expansion for composites with randomly oriented fibers", J. Compos. Mater., 15(1), 2-20. https://doi.org/10.1177/002199838101500102
  8. Cui, Y., Kundalwal, S.I. and Kumar, S. (2016), "Gas barrier performance of graphene/polymer nanocomposites", Carbon, 98, 313-333. https://doi.org/10.1016/j.carbon.2015.11.018
  9. Damadam, M., Moheimani, R. and Dalir, H. (2018), "Bree's diagram of a functionally graded thick-walled cylinder under thermo-mechanical loading considering nonlinear kinematic hardening", Case Studies in Thermal Eng., 12, 644-654. https://doi.org/10.1016/j.csite.2018.08.004
  10. Ebrahimi, F. and Barati, M.R. (2018), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., Int. J., 66(6), 693-701. http://dx.doi.org/10.12989/sem.2018.66.6.693
  11. Fan, Y., Xiang, Y., Shen, H.S. and Hui, D. (2018), "Nonlinear lowvelocity impact response of FG-GRC laminated plates resting on visco-elastic foundations", Compos. Part B: Eng., 144, 184-194. https://doi.org/10.1016/j.compositesb.2018.02.016
  12. Fan, Y., Xiang, Y. and Shen, H-S. (2019), "Nonlinear forced vibration of FG-GRC laminated plates resting on visco-Pasternak foundations", Compos. Struct., 209, 443-452. https://doi.org/10.1016/j.compstruct.2018.10.084
  13. Farahani, R.D., Pahlavanpour, M., Dalir, H., Aissa, B., El Khakani, M.A., Levesque, M. and Therriault, D. (2012), "Manufacturing composite beams reinforced with three-dimensionally patterned-oriented carbon nanotubes through microfluidic infiltration", Mater. Des., 41, 214-225. https://doi.org/10.1016/j.matdes.2012.05.005
  14. Gholami, R. and Ansari, R. (2018a), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019
  15. Gholami, R. and Ansari, R. (2018b), "On the Nonlinear Vibrations of Polymer Nanocomposite Rectangular Plates Reinforced by Graphene Nanoplatelets: A Unified Higher-Order Shear Deformable Model", Iran. J. Sci. Technol., Trans. Mech. Eng. http://link.springer.com/10.1007/s40997-018-0182-9
  16. Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polym. Eng. Sci., 16, 344-352. https://doi.org/10.1002/pen.760160512
  17. Hetnarski, R.B. and Eslami, M.R. (2009), Thermal stresses-advanced theory and applications, Springer, The Netherlands.
  18. Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. http://dx.doi.org/10.12989/scs.2018.27.3.255
  19. Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086
  20. Konatham, D. and Striolo, A. (2009), "Thermal boundary resistance at the graphene-oil interface", Appl. Phys. Lett., 95, 163105. https://doi.org/10.1063/1.3251794
  21. Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT-and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. http://dx.doi.org/10.12989/scs.2016.21.5.1085
  22. Laoufi, I., Ameur, M., Zidi, M., Bedia, E.A.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889
  23. Lei, Z., Su, Q., Zeng, H., Zhang, Y. and Yu, C. (2018), "Parametric studies on buckling behavior of functionally graded graphenereinforced composites laminated plates in thermal environment", Compos. Struct., 202, 695-709. https://doi.org/10.1016/j.compstruct.2018.03.079
  24. Li, M., Zhou, H., Zhang, Y., Liao, Y. and Zhou, H. (2018), "Effect of defects on thermal conductivity of graphene/epoxy nanocomposites", Carbon, 130, 295-303. https://doi.org/10.1016/j.carbon.2017.12.110
  25. Lin, F., Xiang, Y. and Shen, H.S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites - A molecular dynamics simulation", Compos. Part B, 111, 261-269. https://doi.org/10.1016/j.compositesb.2016.12.004
  26. Malekzadeh, P., Setoodeh, A.R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method", Comput. Meth. Appl. Mech. Eng., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006
  27. Moheimani, R. and Ahmadian, M.T. (2012), "On Free Vibration of Functionally Graded Euler-Bernoulli Beam Models Based on the Non-Local Theory", In: ASME International Mechanical Engineering Congress and Exposition, Volume 12: Vibration, Acoustics and Wave Propagation, pp. 169-173.
  28. Moheimani, R., Damadam, M., Nayebi, A. and Dalir, H. (2018), "Thick-walled functionally graded material cylinder under thermo-mechanical loading", In: 9th International Conference on Mechanical and Aerospace Engineering (ICMAE) IEEE, pp. 505-510.
  29. Moradi-Dastjerdi, R. and Payganeh, G. (2017a), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., Int. J., 25(3), 315-326. http://dx.doi.org/10.12989/scs.2017.25.3.315
  30. Moradi-Dastjerdi, R. and Payganeh, G. (2017b), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., Int. J., 24(3), 359-367. http://dx.doi.org/10.12989/scs.2017.24.3.359
  31. Moradi-Dastjerdi, R. and Payganeh, G. (2018), "Thermoelastic vibration analysis of functionally graded wavy carbon nanotube-reinforced cylinders", Poly. Compos., 39(S2), E826-E834. https://doi.org/10.1002/pc.24278
  32. Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22, 1062-1075. https://doi.org/10.1177/1077546314539368
  33. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2017), "Resonance in Functionally Graded Nanocomposite Cylinders Reinforced by Wavy Carbon Nanotube", Poly. Compos., 38, E542-E552. https://doi.org/10.1002/pc.24045
  34. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2018), "Thermoelastic Analysis of Functionally Graded Cylinders Reinforced by Wavy CNT Using a Mesh-Free Method", Poly. Compos., 39(7), 2190-2201. https://doi.org/10.1002/pc.24183
  35. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Sci., 306(5696), 666-669. https://doi.org/10.1126/science.1102896
  36. Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B, 99(15), 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028
  37. Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2018), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Poly. Compos., 39(4), 1161-1171. https://doi.org/10.1002/pc.24046
  38. Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Letters, 95(22), 223103. https://doi.org/10.1063/1.3269637
  39. Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", MECHANIKA, 23(5), 678-687.
  40. Safaei, B., Moradi-Dastjerdi, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022
  41. Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B, 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049
  42. Safari, S., Moradi-Dastjerdi, R., Nezam Abadi, A. and Tajdari, M. (2018), "Vibration behavior of magnetorheological-filled functionally graded nanocomposite cylinders reinforced by carbon nanotube", Poly. Compos., 39(S2), E1005-E1012. https://doi.org/10.1002/pc.24405
  43. Setoodeh, A.R. and Badjian, H. (2017), "Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study", Mater. Res. Express, 4(12), 125019. https://doi.org/10.1088/2053-1591/aa9ac2
  44. Shen, X., Wang, Z., Wu, Y., Liu, X., He, Y.B. and Kim, J.K. (2016), "Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites", Nano Letters 16(6), 3585-3593. https://doi.org/10.1021/acs.nanolett.6b00722
  45. Shen, H.S., Lin, F. and Xiang, Y. (2017a), "Nonlinear bending and thermal postbuckling of functionally graded graphenereinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069
  46. Shen, H.S., Xiang, Y. and Lin, F. (2017b), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. https://doi.org/10.1016/j.compstruct.2017.03.001
  47. Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments", Compos. Part B, 141, 148-157. https://doi.org/10.1016/j.compositesb.2017.12.048
  48. Sobhaniaragh, B., Batra, R.C., Mansur, W.J. and Peters, F.C. (2017), "Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme", Compos. Part B, 118, 41-53. https://doi.org/10.1016/j.compositesb.2017.02.032
  49. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
  50. Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B, 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043
  51. Sun, Y. and Shi, G. (2013), "Graphene/polymer composites for energy applications", J. Poly. Sci., Part B: Poly. Phys., 51(4), 231-253. https://doi.org/10.1002/polb.23226
  52. Wu, H., Yang, J. and Kitipornchai, S. (2018), "Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates", Int. J. Mech. Sci., 135, 431-440. https://doi.org/10.1016/j.ijmecsci.2017.11.039
  53. Yang, Y.H., Bolling, L., Priolo, M.A. and Grunlan, J.C. (2013), "Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films", Adv. Mater., 25(4), 503-508. https://doi.org/10.1002/adma.201202951
  54. Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Modelling, 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044
  55. Yang, B., Mei, J., Chen, D., Yu, F. and Yang, J. (2018), "3D thermo-mechanical solution of transversely isotropic and functionally graded graphene reinforced elliptical plates", Compos. Struct., 184, 1040-1048. https://doi.org/10.1016/j.compstruct.2017.09.086
  56. Yu, Y., Shen, H.S., Wang, H. and Hui, D. (2018), "Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments", Compos. Part B, 135, 72-83. https://doi.org/10.1016/j.compositesb.2017.09.045

Cited by

  1. Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
  2. Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261