Acknowledgement
Supported by : Natural Sciences and Engineering Research Council of Canada(NSERC)
References
- Al-Mashat, L., Shin, K., Kalantar-zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., Kaner, R.B., Li, D., Gou, X., Ippolito, S.J. and Wlodarski, W., (2010), "Graphene/polyaniline nanocomposite for hydrogen sensing", The J. Phys. Chem. C, 114, 16168-16173. https://doi.org/10.1021/jp103134u
- Alian, A.R., Dewapriya, M.A.N. and Meguid, S.A. (2017), "Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites", Mater. Des., 124, 47-57. https://doi.org/10.1016/j.matdes.2017.03.052
- Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881. https://doi.org/10.1016/j.compstruct.2013.07.002
- Arani, A.G., Zarei, M.S., Mohammadimehr, M., Arefmanesh, A. and Mozdianfard, M.R. (2011), "The thermal effect on buckling analysis of a DWCNT embedded on the Pasternak foundation", Phys. E, Low-dimensional Syst. Nanostruct., 43(9), 1642-1648. https://doi.org/10.1016/j.physe.2011.05.014
- Arani, A.G., Kolahchi, R., Barzoki, A.A.M., Mozdianfard, M.R. and Farahani, S.M.N. (2013), "Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method", Proceed. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 227(4), 862-879. https://doi.org/10.1177/0954406212453808
- Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872
- Craft, W.J. and Christensen, R.M. (1981), "Coefficient of thermal expansion for composites with randomly oriented fibers", J. Compos. Mater., 15(1), 2-20. https://doi.org/10.1177/002199838101500102
- Cui, Y., Kundalwal, S.I. and Kumar, S. (2016), "Gas barrier performance of graphene/polymer nanocomposites", Carbon, 98, 313-333. https://doi.org/10.1016/j.carbon.2015.11.018
- Damadam, M., Moheimani, R. and Dalir, H. (2018), "Bree's diagram of a functionally graded thick-walled cylinder under thermo-mechanical loading considering nonlinear kinematic hardening", Case Studies in Thermal Eng., 12, 644-654. https://doi.org/10.1016/j.csite.2018.08.004
- Ebrahimi, F. and Barati, M.R. (2018), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., Int. J., 66(6), 693-701. http://dx.doi.org/10.12989/sem.2018.66.6.693
- Fan, Y., Xiang, Y., Shen, H.S. and Hui, D. (2018), "Nonlinear lowvelocity impact response of FG-GRC laminated plates resting on visco-elastic foundations", Compos. Part B: Eng., 144, 184-194. https://doi.org/10.1016/j.compositesb.2018.02.016
- Fan, Y., Xiang, Y. and Shen, H-S. (2019), "Nonlinear forced vibration of FG-GRC laminated plates resting on visco-Pasternak foundations", Compos. Struct., 209, 443-452. https://doi.org/10.1016/j.compstruct.2018.10.084
- Farahani, R.D., Pahlavanpour, M., Dalir, H., Aissa, B., El Khakani, M.A., Levesque, M. and Therriault, D. (2012), "Manufacturing composite beams reinforced with three-dimensionally patterned-oriented carbon nanotubes through microfluidic infiltration", Mater. Des., 41, 214-225. https://doi.org/10.1016/j.matdes.2012.05.005
- Gholami, R. and Ansari, R. (2018a), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019
- Gholami, R. and Ansari, R. (2018b), "On the Nonlinear Vibrations of Polymer Nanocomposite Rectangular Plates Reinforced by Graphene Nanoplatelets: A Unified Higher-Order Shear Deformable Model", Iran. J. Sci. Technol., Trans. Mech. Eng. http://link.springer.com/10.1007/s40997-018-0182-9
- Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polym. Eng. Sci., 16, 344-352. https://doi.org/10.1002/pen.760160512
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal stresses-advanced theory and applications, Springer, The Netherlands.
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. http://dx.doi.org/10.12989/scs.2018.27.3.255
- Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086
- Konatham, D. and Striolo, A. (2009), "Thermal boundary resistance at the graphene-oil interface", Appl. Phys. Lett., 95, 163105. https://doi.org/10.1063/1.3251794
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT-and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. http://dx.doi.org/10.12989/scs.2016.21.5.1085
- Laoufi, I., Ameur, M., Zidi, M., Bedia, E.A.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889
- Lei, Z., Su, Q., Zeng, H., Zhang, Y. and Yu, C. (2018), "Parametric studies on buckling behavior of functionally graded graphenereinforced composites laminated plates in thermal environment", Compos. Struct., 202, 695-709. https://doi.org/10.1016/j.compstruct.2018.03.079
- Li, M., Zhou, H., Zhang, Y., Liao, Y. and Zhou, H. (2018), "Effect of defects on thermal conductivity of graphene/epoxy nanocomposites", Carbon, 130, 295-303. https://doi.org/10.1016/j.carbon.2017.12.110
- Lin, F., Xiang, Y. and Shen, H.S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites - A molecular dynamics simulation", Compos. Part B, 111, 261-269. https://doi.org/10.1016/j.compositesb.2016.12.004
- Malekzadeh, P., Setoodeh, A.R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method", Comput. Meth. Appl. Mech. Eng., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006
- Moheimani, R. and Ahmadian, M.T. (2012), "On Free Vibration of Functionally Graded Euler-Bernoulli Beam Models Based on the Non-Local Theory", In: ASME International Mechanical Engineering Congress and Exposition, Volume 12: Vibration, Acoustics and Wave Propagation, pp. 169-173.
- Moheimani, R., Damadam, M., Nayebi, A. and Dalir, H. (2018), "Thick-walled functionally graded material cylinder under thermo-mechanical loading", In: 9th International Conference on Mechanical and Aerospace Engineering (ICMAE) IEEE, pp. 505-510.
- Moradi-Dastjerdi, R. and Payganeh, G. (2017a), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., Int. J., 25(3), 315-326. http://dx.doi.org/10.12989/scs.2017.25.3.315
- Moradi-Dastjerdi, R. and Payganeh, G. (2017b), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., Int. J., 24(3), 359-367. http://dx.doi.org/10.12989/scs.2017.24.3.359
- Moradi-Dastjerdi, R. and Payganeh, G. (2018), "Thermoelastic vibration analysis of functionally graded wavy carbon nanotube-reinforced cylinders", Poly. Compos., 39(S2), E826-E834. https://doi.org/10.1002/pc.24278
- Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22, 1062-1075. https://doi.org/10.1177/1077546314539368
- Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2017), "Resonance in Functionally Graded Nanocomposite Cylinders Reinforced by Wavy Carbon Nanotube", Poly. Compos., 38, E542-E552. https://doi.org/10.1002/pc.24045
- Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2018), "Thermoelastic Analysis of Functionally Graded Cylinders Reinforced by Wavy CNT Using a Mesh-Free Method", Poly. Compos., 39(7), 2190-2201. https://doi.org/10.1002/pc.24183
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Sci., 306(5696), 666-669. https://doi.org/10.1126/science.1102896
- Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B, 99(15), 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028
- Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2018), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Poly. Compos., 39(4), 1161-1171. https://doi.org/10.1002/pc.24046
- Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Letters, 95(22), 223103. https://doi.org/10.1063/1.3269637
- Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", MECHANIKA, 23(5), 678-687.
- Safaei, B., Moradi-Dastjerdi, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022
- Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B, 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049
- Safari, S., Moradi-Dastjerdi, R., Nezam Abadi, A. and Tajdari, M. (2018), "Vibration behavior of magnetorheological-filled functionally graded nanocomposite cylinders reinforced by carbon nanotube", Poly. Compos., 39(S2), E1005-E1012. https://doi.org/10.1002/pc.24405
- Setoodeh, A.R. and Badjian, H. (2017), "Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study", Mater. Res. Express, 4(12), 125019. https://doi.org/10.1088/2053-1591/aa9ac2
- Shen, X., Wang, Z., Wu, Y., Liu, X., He, Y.B. and Kim, J.K. (2016), "Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites", Nano Letters 16(6), 3585-3593. https://doi.org/10.1021/acs.nanolett.6b00722
- Shen, H.S., Lin, F. and Xiang, Y. (2017a), "Nonlinear bending and thermal postbuckling of functionally graded graphenereinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069
- Shen, H.S., Xiang, Y. and Lin, F. (2017b), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. https://doi.org/10.1016/j.compstruct.2017.03.001
- Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments", Compos. Part B, 141, 148-157. https://doi.org/10.1016/j.compositesb.2017.12.048
- Sobhaniaragh, B., Batra, R.C., Mansur, W.J. and Peters, F.C. (2017), "Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme", Compos. Part B, 118, 41-53. https://doi.org/10.1016/j.compositesb.2017.02.032
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
- Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B, 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043
- Sun, Y. and Shi, G. (2013), "Graphene/polymer composites for energy applications", J. Poly. Sci., Part B: Poly. Phys., 51(4), 231-253. https://doi.org/10.1002/polb.23226
- Wu, H., Yang, J. and Kitipornchai, S. (2018), "Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates", Int. J. Mech. Sci., 135, 431-440. https://doi.org/10.1016/j.ijmecsci.2017.11.039
- Yang, Y.H., Bolling, L., Priolo, M.A. and Grunlan, J.C. (2013), "Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films", Adv. Mater., 25(4), 503-508. https://doi.org/10.1002/adma.201202951
- Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Modelling, 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044
- Yang, B., Mei, J., Chen, D., Yu, F. and Yang, J. (2018), "3D thermo-mechanical solution of transversely isotropic and functionally graded graphene reinforced elliptical plates", Compos. Struct., 184, 1040-1048. https://doi.org/10.1016/j.compstruct.2017.09.086
- Yu, Y., Shen, H.S., Wang, H. and Hui, D. (2018), "Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments", Compos. Part B, 135, 72-83. https://doi.org/10.1016/j.compositesb.2017.09.045
Cited by
- Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261