DOI QR코드

DOI QR Code

Diffraction Efficiency Analysis for Reconstruction of Digital Hologram based on SLM

SLM 기반의 디지털 홀로그램 복원에 대한 회절효율 특성 분석

  • Seo, Young-Ho (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Lee, Yoon-Huck (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Kim, Dong-Wook (Department of Electronic Material Engineering, Kwangwoon University)
  • Received : 2018.08.24
  • Accepted : 2019.04.16
  • Published : 2019.05.30

Abstract

A digital hologram, which is one of the next generation visual systems, can be generated and displayed in various formats, and a digital hologram is created in accordance with the characteristics of the system for display. Diffraction efficiency can be used as a measure of the characteristics of digital holograms generaged under various conditions in various display environments. In this paper, diffraction efficiency for computer-generated hologram (CGH) under various conditions was measured. This paper discusses the generation conditions that should be considered in hologram display. We compared each condition by measuring the intensity of the first order diffraction pattern of the fringe generated under the Fresnel condition for the phase hologram. Through this paper, we showed the tend about characteristics of the diffraction efficiency according to object point, reconstruction distance, laser and SLM.

차세대 영상시스템의 하나인 디지털홀로그램은 다양한 형태로 생성되고 재생될 수 있고, 디지털홀로그램은 재생을 위한 시스템의 특성에 맞게 생성된다. 다양한 조건으로 생성된 디지털홀로그램이 다양한 재생환경에서 어떠한 특성을 나타내는지에 대한 척도로써 회절효율의 측정을 사용할 수 있다. 본 논문에서는 다양한 조건으로 생성된 컴퓨터생성홀로그램(Computer-generated Hologram, CGH)에 대한 회절효율을 측정하였다. 이를 통해 홀로그램 재생 시 고려해야되는 생성 조건에 대해 논의한다. 위상 방식의 복소 홀로그램을 대상으로 프레넬 조건 하에서 생성된 프린지의 1차 회절 패턴의 강도를 측정함으로써 각 조건들을 비교한다. 본 논문을 통해서 객체 포인트, 복원 거리, 레이저 및 SLM의 종류에 따른 회절효율의 특성에 대한 경향성을 보였다.

Keywords

BSGHC3_2019_v24n3_452_f0001.png 이미지

그림 1. 디지털 홀로그램 (a) 생성 (b) 복원 Fig. 1. Digital hologram (a) generation (b) reconstruction

BSGHC3_2019_v24n3_452_f0002.png 이미지

그림 2. 홀로그램 생성을 위한 평면들 Fig. 2. Planes for hologram generation

BSGHC3_2019_v24n3_452_f0003.png 이미지

그림 3. 회절효율 측정시스템의 구조 Fig. 3. Sturcture of measurement system of diffraction efficiency

BSGHC3_2019_v24n3_452_f0004.png 이미지

그림 4. 1차 회절패턴의 측정을 위한 진행파의 차단 Fig. 4. Cutoff of traveling wave for measuring the first order diffration pattern

BSGHC3_2019_v24n3_452_f0005.png 이미지

그림 5. 회절효율 측정을 위한 광학실험장치 (a) Red, (b) Green 레이저를 사용한 경우 Fig. 5. Optical experiment equipment in the case of (a) Red and (b) Green laser

BSGHC3_2019_v24n3_452_f0006.png 이미지

그림 6. 회절효율 측정 결과 (a) Red 6.4μm, (b) Red 8.0μm, (c) Green 6.4μm, (b) Green 8.0μm Fig. 6. Measurement result of diffraction efficiency (a) Red 6.4μm, (b) Red 8.0μm, (c) Green 6.4μm, (b) Green 8.0μm

BSGHC3_2019_v24n3_452_f0007.png 이미지

그림 7. 실험에 사용된 (a) 밝기영상, (b) 깊이 영상, (c) 생성된 홀로그램, (d) 광학적 복원 영상 Fig. 7. Test images (a) texture, (b) depth, (c) hologram, (d) optical reconstruction

표 1. 6.4μm의 화소크기를 갖는 SLM의 사양 Table 1. Specification of a SLM with 6.4μm pixel size

BSGHC3_2019_v24n3_452_t0001.png 이미지

표 2. 8.0μm의 화소크기를 갖는 SLM의 사양 Table 2. Specification of a SLM with 8.0μm pixel size

BSGHC3_2019_v24n3_452_t0002.png 이미지

표 3. 실험에 사용된 레이저 Table 3. Lasers used in our experiment

BSGHC3_2019_v24n3_452_t0003.png 이미지

표 4. SLM간 회절효율의 비(Red 레이저 사용) Table 4. Ratio of diffraction efficiency between SLMs (Red laser used)

BSGHC3_2019_v24n3_452_t0004.png 이미지

표 5. 레이저간 회절효율의 비(6.4μm SLM 사용) Table 5. Ratio of diffraction efficiency between lasers (6.4μm SLM used)

BSGHC3_2019_v24n3_452_t0005.png 이미지

표 6. SLM간 회절효율의 비(Green 레이저 사용) Table 6. Ratio of diffraction efficiency between SLMs (Green laser used)

BSGHC3_2019_v24n3_452_t0006.png 이미지

표 7. 레이저간 회절효율의 비(8.0μm SLM 사용) Table 7. Ratio of diffraction efficiency between lasers (8.0μm SLM used)

BSGHC3_2019_v24n3_452_t0007.png 이미지

References

  1. B. Lee, "Three-Dimensional Displays, Past and Present," Phys. Today, vol. 66, no. 4, pp. 36-41, http://dx.doi.org/10.1063/PT.3.1947 (accessed May 1, 2019).
  2. J. Hong et al., "Three-Dimensional Display Technologies of Recent Interest: Principles, Status, and Issues," Appl. Opt., vol. 50, no. 34, pp. H87-H115, Sep. 2011. https://doi.org/10.1364/AO.50.000H87
  3. G. Nehmetallah, R. Aylo, and L. Williams, Analog and Digital Holography With MATLAB, Bellingham, WA, USA: SPIE, Aug. 2015.
  4. S.A. Benton and V.M. Bove, Holographic Imaging, Hoboken, NJ, USA: John Wiley & Sons, 2008.
  5. Lim Y, Hong K Park M Kim J, "Digital Holographic Display Technology Trends", Electronics and Telecommunications Trends. Vol. 32, No. 5, pp. 30-38, Oct 2017, https://doi.org/10.22648/ETRI.2017.J.320504
  6. C. Linge, T. Haist, and W. Osten, "Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect," Applied Optics, Vol. 52, No. 28, pp. 6877-6883,Oct. 2013. https://doi.org/10.1364/AO.52.006877
  7. T. H. Barnes, T. Eiju, and K. Matusda, "Phase-only modulation using a twisted nematic liquid crystal television," Appl. Opt. 28, 4845-4852, 1989. https://doi.org/10.1364/AO.28.004845
  8. W. Osten and W. P. O. Jueptner, "New light sources and sensors for active optical 3D inspection," Proc. SPIE 3897, 314-327, 999.
  9. J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82, 2000. https://doi.org/10.1016/S0030-4018(00)00990-1
  10. D. Grier, "A revolution in optical manipulation," Nature 424, 810-816, 2003. https://doi.org/10.1038/nature01935
  11. S. Furhapter, A. Jesacher, A. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694, 2005. https://doi.org/10.1364/OPEX.13.000689
  12. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, "SLM-based phase-contrast filtering for single and multiple image acquisition," Proc. SPIE 7442, 74420E, 2009.
  13. F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, "Dynamic multipoint vibrometry using spatial light modulators," In Fringe 2009, pp. 1-4, Nov. 2009.
  14. T. Haist, C. Lingel, W. Osten, M. Winter, M. Giesen, F. Ritter, and C. Rembe, "Advanced multipoint vibrometry using spatial light modulators," In AIP Conference Proceedings, Vol. 1457, No. 1, pp. 234-241, 2012, https://doi.org/10.1063/1.4730562 (accessed May 1, 2019).
  15. T. Haist, C. Lingel, W. Osten, C. Rembe, M. Winter, and M. Giesen, "SLM-based multipoint vibrometry," in Optical Sensors (Optical Society of America, 2012), pp. SM2F.1, https://doi.org/10.1364/SENSORS.2012.SM2F.1 (accessed May 1, 2019).
  16. S. Zwick, M. Warber, T. Haist, F. Schaal, W. Osten, S. Boedecker, C. Rembe, and E. P. Tomasini, "Advanced scanning laser-Doppler vibrometer with computer generated holograms," In AIP Conference Proceedings, Vol. 1253, No. 1, pp. 279-290, https://doi.org/10.1063/1.3455467 (accessed May 1, 2019).
  17. J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. Vol. 233, pp. 161-166, https://doi.org/10.1016/j.optcom.2004.01.029 (accessed May 1, 2019).
  18. M. Reicherter, W. Gorski, T. Haist, and W. Osten, "Dynamic correction of aberrations in microscopic imaging systems using an artificial point source," Proc. SPIE, Vol. 5462, pp. 68-79, 2004, https://doi.org/10.1117/12.544115 (accessed May 1, 2019).
  19. C. Kohler, F. Zhang, and W. Osten, "Characterization of a spatial light modulator and its application in phase retrieval," Appl. Opt., Vol. 48, Issue 20, pp. 4003-4008, 2009, https://doi.org/10.1364/AO.48.004003 (accessed May 1, 2019).
  20. C. Kohler, X. Schwab, and W. Osten, "Optimally tuned spatial light modulators for digital holography," Appl. Opt., Vol. 45, Issue 5, pp. 960-967, 2006, https://doi.org/10.1364/AO.45.000960, (accessed May 1, 2019).
  21. T. Baumbach, W. Osten, C. von Kopylow, and W. Juptner, "Remote metrology by comparative digital holography," Appl. Opt., Vol. 45, Issue 5, pp. 925-934, 2006, https://doi.org/10.1364/AO.45.000925 (accessed May 1, 2019).
  22. S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixelated light modulators," Appl. Opt., Vol. 49, Issue 25, pp. F47-F58, 2010, https://doi.org/10.1364/AO.49.000F47 (accessed May 1, 2019).
  23. J. Han, "Space-bandwidth product in digital holography," Broadcasting and Media Magazine, Vol. 16, No. 2, pp. 63-72, Jun. 2011.
  24. A.W. Lohmann et al., "Space-Bandwidth Product of Optical Signals and Systems," J. Opt. Soc. America A, Vol. 13, No. 3, pp. 470-473, 1996, https://doi.org/10.1364/JOSAA.13.000470 (accessed May 1, 2019).
  25. Christian Lingel, Tobias Haist, and Wolfgang Osten, "Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect," Applied Optics, Vol. 52, No. 28, pp. 6877-6883, Oct. 2013. https://doi.org/10.1364/AO.52.006877
  26. J. K. Chung and M. H. Tsai, Three-Dimensional Holographic Imaging, Wiley, 2002.
  27. P. Hariharan, Basics of Holography, Cambridge University, 2002.