East Asian Math. J.
Vol. 35 (2019), No. 3, pp. 331-340
YNMS
http://dx.doi.org/10.7858/eamj.2019.029

ON THE STABILITY OF A GENERAL QUADRATIC-CUBIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

Yang-Hi Lee

Abstract

In this paper, we investigate the stability for the functional equation $f(x+k y)-k f(x+y)+k f(x-y)-f(x-k y)-\left(k^{3}-k\right) f(y)+\left(k^{3}-k\right) f(-y)=0$

 in the sense of M. S. Moslehian and Th. M. Rassias.
1. Introduction

In 1940, Ulam [18] proposed the problem concerning the stability of group homomorphisms. In 1941, Hyers [6] gave an affirmative answer to this problem for additive mappings between Banach spaces. Subsequently many mathematicians came to deal with this problem [5, 15].

Recently M. S. Moslehian and Th. M. Rassias [13] discussed the Hyers-Ulam stability of the Cauchy functional equation

$$
f(x+y)=f(x)+f(y)
$$

and the quadratic functional equation

$$
f(x+y)+f(x-y)-2 f(x)-2 f(y)=0
$$

in non-Archimedean normed spaces. The following definitions and terminologies were introduced by M. S. Moslehian and Th. M. Rassias [13].

Definition 1. Let \mathbb{K} be a field. A function $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ is a nonArchimedean valuation if the following conditions hold:
(i) $|r|=0$ if and only if $r=0$,
(ii) $|r s|=|r||s|$, and
(iii) $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in \mathbb{K}$.

A scalar field \mathbb{K} with a non-Archimedean valuation $|\cdot|$ is called a non-Archimedean field.

[^0]Clearly $|1|=|-1|$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Definition 2. Let X be a vector space over a scalar field \mathbb{K} with a nonArchimedean non- trivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a nonArchimedean norm (valuation) if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\|(r \in \mathbb{K}, x \in X)$;
(iii) the strong triangle inequality (ultrametric); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)
$$

Then $(X,\|\cdot\|)$ is called a non-Archimedean space.
Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\}(n>m)
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

A solution of the quadratic functional equation is called a quadratic mapping and a solution of the functional equation

$$
f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y)=0
$$

is called a cubic mapping [7,12, 14]. A mapping f is called a general quadraticcubic mapping if f is represented by sum of a quadratic mapping, a cubic mapping and a constant mapping. A functional equation is called a general quadratic-cubic functional equation provided that each solution of that equation is a general quadratic-cubic mapping and every general quadratic-cubic mapping is a solution of that equation $[2,3,10,11,12,17,19]$. Now, consider the following functional equation

$$
\begin{array}{rl}
f(x+k y)-k & f(x+y)+k f(x-y)-f(x-k y) \\
& -\left(k^{3}-k\right) f(y)+\left(k^{3}-k\right) f(-y)=0 . \tag{1}
\end{array}
$$

It is easy to see that the mapping $f(x)=a x^{3}+b x^{2}+c$ is a solution of the functional equation (1), where $f: \mathbb{R} \rightarrow \mathbb{R}$ and a, b, c are real constants.

When k is a fixed rational number such that $k \neq 0, \pm 1$, the functional equation (1) is a general quadratic-cubic functional equation.

In this paper, we investigate the general stability of that functional equation in non-Archimedean normed spaces.

2. Stability of the quadratic-cubic functional equation

Throughout this section, assume that V and W are real vector spaces, X and Y are non-Archimedean normed spaces over \mathbb{K} with $|k|<1$, and k is a real
number such that $k \neq 0, \pm 1$. For a given mapping $f: V \rightarrow W$, we use the following abbreviations:

$$
\begin{aligned}
f_{o}(x) & :=\frac{f(x)-f(-x)}{2} \\
f_{e}^{\prime}(x) & :=\frac{f(x)+f(-x)}{2}-f(0) \\
Q f(x, y) & :=f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
C f(x, y) & :=f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y) \\
D_{k} f(x, y):= & f(x+k y)-k f(x+y)+k f(x-y)-f(x-k y) \\
& -\left(k^{3}-k\right) f(y)+\left(k^{3}-k\right) f(-y)
\end{aligned}
$$

for all $x, y \in V$.
We need the following particular case of Baker's theorem [1] to prove main theorem.

Theorem 2.1. (Theorem 1 in [1]) Suppose that V and W are vector spaces over \mathbb{Q}, \mathbb{R} or \mathbb{C} and $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalar such that $\alpha_{j} \beta_{l}-\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq m$. If $f_{l}: V \rightarrow W$ for $0 \leq l \leq m$ and

$$
\sum_{l=0}^{m} f_{l}\left(\alpha_{l} x+\beta_{l} y\right)=0
$$

for all $x, y \in V$, then each f_{l} is a generalized polynomial mapping of degree at most $m-1$.

We easily obtain the following theorem from Theorem 2.1.
Theorem 2.2. Let k be a rational number such that $k \neq 0, \pm 1$. If a mapping $f: V \rightarrow W$ satisfies the functional equation $D_{k} f(x, y)=0$ for all $x, y \in V$, then f is a generalized polynomial mapping of degree at most 3.

Suppose that $f, g: V \rightarrow W$ are generalized polynomial mapping of degree at most 3. It is well known that if the equalities $f(k x)=k^{2} f(x)$ and $g(k x)=$ $k^{3} g(x)$ hold for all $x \in V$ and any rational number k such that $k \neq 0, \pm 1$, then f and g are a quadratic mapping and a cubic mapping, respectively.

In the next theorem we will show that the functional equation $D_{k} f \equiv 0$ is a general quadratic-cubic functional equation when k be a fixed rational number such that $k \neq 0, \pm 1$.

Theorem 2.3. Let k be a fixed rational number such that $k \neq 0, \pm 1$. A mapping f satisfies the functional equation $D_{k} f(x, y)=0$ for all $x, y \in V$ if and only if f_{e}^{\prime} is quadratic and f_{o} is cubic.

Proof. If a mapping f satisfies the functional equation $D_{k} f(x, y)=0$ for all $x, y \in V$, then the equalities $f_{o}(k x)=k^{3} f_{o}(x)$ and $f_{e}^{\prime}(k x)=k^{2} f_{e}^{\prime}(x)$ are obtained from the equalities

$$
\begin{aligned}
f_{o}(k x)-k^{3} f_{o}(x)= & \frac{D_{k} f(0, x)}{2} \\
f_{e}^{\prime}(k x)-k^{2} f_{e}^{\prime}(x)= & \frac{1}{2}\left(D_{k} f\left(\frac{k x}{2}, \frac{x}{2}\right)+D_{k} f\left(-\frac{k x}{2},-\frac{x}{2}\right)\right. \\
& \left.+k D_{k} f\left(\frac{x}{2}, \frac{x}{2}\right)+k D_{k} f\left(-\frac{x}{2},-\frac{x}{2}\right)\right)
\end{aligned}
$$

for all $x \in V$. Since f_{o} and f_{e}^{\prime} are generalized polynomial mappings of degree at most $3, f_{o}$ is a cubic mapping and f_{e}^{\prime} is a quadratic mapping.

Conversely, assume that f_{o} is a cubic mapping and f_{e}^{\prime} is a quadratic mapping, i.e., f is a general quadratic-cubic mapping. Notice that f_{o} satisfies the equality $f_{o}(k x)=k^{3} f_{o}(x)$ and $f_{o}(x)=-f_{o}(-x), f_{e}$ satisfies $f_{e}^{\prime}(k x)=k^{2} f_{e}^{\prime}(x)$ and $f_{e}^{\prime}(x)=f_{e}^{\prime}(-x)$ for all $x \in V$ and all $k \in \mathbb{Q}$, and $f(x)=f_{o}(x)+f_{e}^{\prime}(x)+f(0)$.

The equalities $D_{2} f(x, y)=0$ and $D_{3} f(x, y)=0$ follow from the equalities

$$
\begin{aligned}
& D_{2} f_{o}(x, y)=C f_{o}(x, y)+C f_{o}(x-y, y) \\
& D_{2} f_{e}^{\prime}(x, y)=Q f_{e}^{\prime}(x+y, y)-Q f_{e}^{\prime}(x-y, y), \\
& D_{3} f_{o}(x, y)=C f_{o}(x-y, 2 y), \\
& D_{3} f_{e}^{\prime}(x, y)=Q f_{e}^{\prime}(x+y, 2 y)-Q f_{e}^{\prime}(x-y, 2 y), \\
& D_{2} f(0,0)=0 \\
& D_{3} f(0,0)=0
\end{aligned}
$$

for all $x, y \in V$. If the equality $D_{j} f(x, y)=0$ holds for all $j \in \mathbb{N}$ when $2 \leq j \leq n-1$, then the equality $D_{n} f(x, y)=0$ follows from the equality
$D_{n} f(x, y)=D_{n-1} f(x+y, y)+D_{n-1} f(x-y, y)-D_{n-2} f(x, y)+(n-1) D_{2} f(x, y)$ for all $x, y \in V$. Using mathematical induction, we obtain

$$
D_{n} f(x, y)=0
$$

for all $x, y \in V$ and any $n \in \mathbb{N}$. If $k \in \mathbb{Q}$ is represented by either $k=\frac{n}{m}$ or $k=\frac{-n}{m}$ for some $n, m \in \mathbb{N}$ with $m \neq n$, then the desired equality $D_{k} f(x, y)=0$ follows from the equalities

$$
\begin{aligned}
D_{\frac{n}{m}} f(x, y) & =D_{n} f\left(x, \frac{y}{m}\right)-\frac{n}{m} D_{m} f\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}} f(x, y) & =-D_{\frac{n}{m}} f(x, y)
\end{aligned}
$$

for all $x, y \in X$ and $n, m \in \mathbb{N}$.
Theorem 2.4. Let $\varphi: V^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(k^{n} x, k^{n} y\right)}{|k|^{3 n}}=0 \tag{2}
\end{equation*}
$$

for all $x, y \in V$ and let $\tilde{\varphi}(x)$ be the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\varphi_{j}(x), \varphi_{j}(-x): 0 \leq j<n\right\} \tag{3}
\end{equation*}
$$

for each $x \in V$, where

$$
\begin{aligned}
& \varphi_{j}(x):= \max \left\{\frac{\varphi\left(0, k^{j} x\right)}{|2||k|^{3 j+3}}, \frac{\varphi\left(\frac{k^{j+1} x}{2}, \frac{k^{j} x}{2}\right)}{|2||k|^{2 j+2}}, \frac{\varphi\left(-\frac{k^{j+1} x}{2},-\frac{k^{j} x}{2}\right)}{|2||k|^{2 j+2}},\right. \\
&\left.\frac{\varphi\left(\frac{k^{j} x}{2}, \frac{k^{j} x}{2}\right)}{|2||k|^{2 j+1}}, \frac{\varphi\left(-\frac{k^{j} x}{2},-\frac{k^{j} x}{2}\right)}{|2||k|^{2 j+1}}\right\} .
\end{aligned}
$$

Suppose that $f: V \rightarrow Y$ is a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|D_{k} f(x, y)\right\| \leq \varphi(x, y) \tag{4}
\end{equation*}
$$

for all $x, y \in V$. Then there exists a unique general quadratic-cubic mapping $T: V \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \tilde{\varphi}(x) \tag{5}
\end{equation*}
$$

for all $x \in V$. In particular, T is given by

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f^{\prime}\left(k^{n} x\right)+f^{\prime}\left(-k^{n} x\right)}{2 \cdot k^{2 n}}+\frac{f\left(k^{n} x\right)-f\left(-k^{n} x\right)}{2 \cdot k^{3 n}}+f(0)
$$

for all $x \in V$, where $f^{\prime}: V \rightarrow Y$ is a mapping defined by $f^{\prime}(x):=f(x)-f(0)$.
Proof. Let $J_{n} f: V \rightarrow Y$ be a mapping defined by

$$
J_{n} f(x)=\frac{f^{\prime}\left(k^{n} x\right)+f^{\prime}\left(-k^{n} x\right)}{2 \cdot k^{2 n}}+\frac{f\left(k^{n} x\right)-f\left(-k^{n} x\right)}{2 \cdot k^{3 n}}+f(0)
$$

for all $x \in V$ and $n \in \mathbb{N} \cup\{0\}$. Notice that $J_{0} f(x)=f(x)$ and

$$
\begin{aligned}
\| J_{j} f(x)- & J_{j+1} f(x) \| \\
= & \| \frac{-D_{k} f\left(0, k^{j} x\right)}{2 \cdot k^{3 j+3}}-\frac{D_{k} f\left(\frac{k^{j} x}{2}, \frac{k^{j} x}{2}\right)+D_{k} f\left(-\frac{k^{j} x}{2},-\frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+1}} \\
& -\frac{D_{k} f\left(\frac{k^{j+1} x}{2}, \frac{k^{j} x}{2}\right)+D_{k} f\left(-\frac{k^{j+1} x}{2},-\frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+2}} \| \\
\leq & \max \left\{\left\|\frac{D_{k} f\left(0, k^{j} x\right)}{2 \cdot k^{3 j+3}}\right\|,\left\|\frac{D_{k} f\left(\frac{k^{j+1} x}{2}, \frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+2}}\right\|,\left\|\frac{D_{k} f\left(-\frac{k^{j+1} x}{2},-\frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+2}}\right\|,\right. \\
& \left.\left\|\frac{D_{k} f\left(\frac{k^{j} x}{2}, \frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+1}}\right\|,\left\|\frac{D_{k} f\left(-\frac{k^{j} x}{2},-\frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+1}}\right\|\right\}
\end{aligned}
$$

(6) $\leq \varphi_{j}(x)$
for all $x \in V$ and $j \in \mathbb{N} \cup\{0\}$. It follows from (2) and (6) that the sequence $\left\{J_{n} f(x)\right\}$ is Cauchy. Since Y is complete, $\left\{J_{n} f(x)\right\}$ is convergent. Set

$$
T(x):=\lim _{n \rightarrow \infty} J_{n} f(x) .
$$

Using induction one can show that

$$
\begin{equation*}
\left\|J_{n} f(x)-f(x)\right\| \leq \max \left\{\varphi_{j}(x): 0 \leq j<n\right\} \tag{7}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and all $x \in V$. By taking n to approach infinity in (7) and using (3) one obtains (5). Replacing x and y by $k^{n} x$ and $k^{n} y$, respectively, in (4) we get

$$
\begin{aligned}
&\left\|D J_{n} f(x, y)\right\|= \| \frac{D f\left(k^{n} x, k^{n} y\right)-D f\left(-k^{n} x,-k^{n} y\right)}{2 \cdot k^{3 n}} \\
&+\frac{D f\left(k^{n} x, k^{n} y\right)+D f\left(-k^{n} x,-k^{n} y\right)}{2 \cdot k^{2 n}} \| \\
& \leq \max \left\{\frac{\varphi\left(k^{n} x, k^{n} y\right)}{|2| \cdot|k|^{3 n}}, \frac{\varphi\left(-k^{n} x,-k^{n} y\right)}{|2| \cdot|k|^{3 n}}\right. \\
&\left.\frac{\varphi\left(k^{n} x, k^{n} y\right)}{|2| \cdot|k|^{2 n}}, \frac{\varphi\left(-k^{n} x,-k^{n} y\right)}{|2| \cdot|k|^{2 n}}\right\}
\end{aligned}
$$

for all $x, y \in V$ and $n \in \mathbb{N} \cup\{0\}$. Taking the limit as $n \rightarrow \infty$ and using (2) we get $D T(x, y)=0$ for all $x, y \in V$. If T_{1} is another general quadratic-cubic mapping satisfying (5), then the equality

$$
T_{1}(x)-J_{n} T_{1}(x)
$$

follows from the equality

$$
\begin{aligned}
T_{1}(x)-J_{n} T_{1}(x)= & \sum_{j=0}^{n-1}\left(\frac{-D_{k} T_{1}\left(0, k^{j} x\right)}{2 \cdot k^{3 j+3}}-\frac{D_{k} T_{1}\left(\frac{k^{j} x}{2}, \frac{k^{j} x}{2}\right)+D_{k} T_{1}\left(-\frac{k^{j} x}{2},-\frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+1}}\right. \\
& \left.-\frac{D_{k} T_{1}\left(\frac{k^{j+1} x}{2}, \frac{k^{j} x}{2}\right)+D_{k} T_{1}\left(-\frac{k^{j+1} x}{2},-\frac{k^{j} x}{2}\right)}{2 \cdot k^{2 j+2}}\right)
\end{aligned}
$$

for any $n \in \mathbb{N}$ and so we have

$$
\begin{aligned}
\left\|T(x)-T_{1}(x)\right\| & =\lim _{n \rightarrow \infty}\left\|J_{n} T(x)-J_{n} T_{1}(x)\right\| \\
& \leq \lim _{n \rightarrow \infty} \max \left\{\left\|J_{n} T(x)-J_{n} f(x)\right\|,\left\|J_{n} f(x)-J_{n} T_{1}(x)\right\|\right\} \\
& \leq \lim _{n \rightarrow \infty} \max \left\{\frac{\left\|T\left(k^{n} x\right)-f\left(k^{n} x\right)\right\|}{|2||k|^{3 n}}, \frac{\left\|T\left(-k^{n} x\right)-f\left(-k^{n} x\right)\right\|}{|2||k|^{3 n}},\right. \\
& \left.\frac{\left\|f\left(k^{n} x\right)-T_{1}\left(k^{n} x\right)\right\|}{|2||k|^{3 n}}, \frac{\left\|f\left(-k^{n} x\right)-T_{1}\left(-k^{n} x\right)\right\|}{|2||k|^{3 n}}\right\} \\
& \leq \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \max \left\{\frac{\varphi_{j}\left(k^{n} x\right)}{|2||k|^{3 n}}, \frac{\varphi_{j}\left(-k^{n} x\right)}{|2||k|^{3 n}}: 0 \leq j<m\right\} \\
& =0
\end{aligned}
$$

all $x \in V$. Therefore $T=T_{1}$. This completes the proof of the uniqueness of T.

Corollary 2.5. Let X and Y be non-Archimedean normed spaces over \mathbb{K} with $|k|<1$. If Y is complete and for some $3<r, f: X \rightarrow Y$ satisfies the condition

$$
\|D f(x, y)\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in X$. Then there exists a unique general quadratic-cubic mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \theta \cdot \max \left\{|2|^{-1}|k|^{-3},|2|^{-1-r}\left(1+|k|^{r}\right)|k|^{-2}, 2|2|^{-1-r}|k|^{-1}\right\}\|x\|^{r} \tag{8}
\end{equation*}
$$

for all $x \in X$.
Proof. Let $\varphi(x, y)=\theta\left(\|x\|^{r}+\|y\|^{r}\right)$. Since $|k|<1$ and $r-3>0$,

$$
\lim _{n \rightarrow \infty}|k|^{-3 n} \varphi\left(k^{n} x, k^{n} y\right)=\lim _{n \rightarrow \infty}|k|^{n(r-3)} \varphi(x, y)=0
$$

for all $x, y \in X$. Therefore the conditions of Theorem 2.4 are fulfilled. It is easy to see that $\tilde{\varphi}(x)=\theta \cdot \max \left\{|2|^{-1}|k|^{-3},|2|^{-1-r}\left(1+|k|^{r}\right)|k|^{-2}, 2|2|^{-1-r}|k|^{-1}\right\}\|x\|^{r}$. By Theorem 2.4 there is a unique general quadratic-cubic mapping $T: X \rightarrow Y$ satisfying (8).

Theorem 2.6. Let $\varphi: V^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|k|^{2 n} \varphi\left(k^{-n} x, k^{-n} y\right)=0 \tag{9}
\end{equation*}
$$

for all $x, y \in V$ and let for each $x \in V$ the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\varphi_{-j-1}(x), \varphi_{-j-1}(-x): 0 \leq j<n\right\} \tag{10}
\end{equation*}
$$

denoted by $\tilde{\varphi}(x)$, exists, where φ_{j} is defined as in Theorem 2.1. Suppose that $f: V \rightarrow Y$ is a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|D_{k} f(x, y)\right\| \leq \varphi(x, y) \tag{11}
\end{equation*}
$$

for all $x, y \in V$. Then there exists a unique general quadratic-cubic mapping $T: V \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f^{\prime}(x)-T(x)\right\| \leq \tilde{\varphi}(x) \tag{12}
\end{equation*}
$$

for all $x \in V$. In particular, T is given by
$T(x)=\lim _{n \rightarrow \infty}\left(\frac{k^{2 n}}{2}\left(f^{\prime}\left(\frac{x}{k^{n}}\right)+f^{\prime}\left(\frac{-x}{k^{n}}\right)\right)+\frac{k^{3 n}}{2}\left(f\left(\frac{x}{k^{n}}\right)-f\left(\frac{-x}{k^{n}}\right)\right)\right)+f(0)$
for all $x \in V$.
Proof. Let $J_{n} f: V \rightarrow Y$ be a mapping defined by

$$
J_{n} f(x)=\frac{k^{2 n}}{2}\left(f^{\prime}\left(\frac{x}{k^{n}}\right)+f^{\prime}\left(\frac{-x}{k^{n}}\right)\right)+\frac{k^{3 n}}{2}\left(f\left(\frac{x}{k^{n}}\right)-f\left(\frac{-x}{k^{n}}\right)\right)+f(0)
$$

for all $x \in V$ and $n \in \mathbb{N} \cup\{0\}$. Notice that $J_{0} f(x)=f(x)$ and

$$
\begin{aligned}
& \| J_{j} f(x)- J_{j+1} f(x) \| \\
&= \| \frac{k^{3 j} D_{k} f\left(0, \frac{x}{k^{j+1}}\right)}{2}+\frac{k^{2 j}}{2}\left(D_{k} f\left(\frac{x}{2 \cdot k^{j}}, \frac{x}{2 \cdot k^{j+1}}\right)+D_{k} f\left(\frac{-x}{2 \cdot k^{j}}, \frac{-x}{2 \cdot k^{j+1}}\right)\right. \\
&\left.+k D_{k} f\left(\frac{x}{2 \cdot k^{j+1}}, \frac{x}{2 \cdot k^{j+1}}\right)+k D_{k} f\left(\frac{-x}{2 \cdot k^{j+1}}, \frac{-x}{2 \cdot k^{j+1}}\right)\right) \| \\
& \leq \max \left\{\frac{|k|^{3 j}}{|2|}\left\|D_{k} f\left(0, \frac{x}{k^{j+1}}\right)\right\|, \frac{|k|^{2 j}}{|2|}\left\|D_{k} f\left(\frac{x}{2 \cdot k^{j}}, \frac{x}{2 \cdot k^{j+1}}\right)\right\|,\right. \\
& \frac{|k|^{2 j}}{|2|}\left\|D_{k} f\left(\frac{-x}{2 \cdot k^{j}}, \frac{-x}{2 \cdot k^{j+1}}\right)\right\|, \frac{|k|^{2 j+1}}{|2|}\left\|D_{k} f\left(\frac{x}{2 \cdot k^{j+1}}, \frac{x}{2 \cdot k^{j+1}}\right)\right\|, \\
&\left.\quad \frac{|k|^{2 j+1}}{|2|}\left\|D_{k} f\left(\frac{-x}{2 \cdot k^{j+1}}, \frac{-x}{2 \cdot k^{j+1}}\right)\right\|\right\}
\end{aligned}
$$

for all $x \in V$ and $j \in \mathbb{N} \cup\{0\}$. It follows from (13) and (9) that the sequence $\left\{J_{n} f(x)\right\}$ is Cauchy. Since Y is complete, $\left\{J_{n} f(x)\right\}$ is convergent. Set

$$
T(x):=\lim _{n \rightarrow \infty} J_{n} f(x) .
$$

Using induction one can show that

$$
\begin{equation*}
\left\|J_{n} f(x)-f(x)\right\| \leq \max \left\{\varphi_{-j-1}(x): 0 \leq j<n\right\} \tag{14}
\end{equation*}
$$

for all $n \in N$ and all $x \in V$. By taking n to approach infinity in (14) and using (10) one obtains (12). Replacing x and y by $k^{-n} x$ and $k^{-n} y$, respectively, in (11) we get

$$
\begin{aligned}
\left\|D J_{n} f(x, y)\right\|= & \| \frac{k^{3 n}}{2} D f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)-\frac{k^{3 n}}{2} D f\left(\frac{-x}{k^{n}}, \frac{-y}{k^{n}}\right) \\
& +\frac{k^{2 n}}{2} D f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)+\frac{k^{2 n}}{2} D f\left(\frac{-x}{k^{n}}, \frac{-y}{k^{n}}\right) \| \\
\leq & \max \left\{|2|^{-1}|k|^{2 n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right),|2|^{-1}|k|^{2 n} \varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)\right\}
\end{aligned}
$$

for all $n \in \mathbb{N}$ and all $x, y \in V$. Taking the limit as $n \rightarrow \infty$ and using (9) we get $D T(x, y)=0$. If T_{1} is another general quadratic-cubic mapping satisfying (12), then the equality $T_{1}(x)=J_{n} T_{1}(x)$ follows from the equality

$$
\begin{aligned}
& T_{1}(x)-J_{n} T_{1}(x) \\
& =\sum_{j=0}^{n-1}\left(\frac{k^{3 j} D_{k} T_{1}\left(0, \frac{x}{k^{j+1}}\right)}{2}+\frac{k^{2 j}}{2}\left(D_{k} T_{1}\left(\frac{x}{2 \cdot k^{j}}, \frac{x}{2 \cdot k^{j+1}}\right)+D_{k} T_{1}\left(\frac{-x}{2 \cdot k^{j}}, \frac{-x}{2 \cdot k^{j+1}}\right)\right.\right. \\
& \left.\left.\quad+k D_{k} T_{1}\left(\frac{x}{2 \cdot k^{j+1}}, \frac{x}{2 \cdot k^{j+1}}\right)+k D_{k} T_{1}\left(\frac{-x}{2 \cdot k^{j+1}}, \frac{-x}{2 \cdot k^{j+1}}\right)\right)\right)
\end{aligned}
$$

for any $k \in \mathbb{N}$ and so

$$
\begin{aligned}
\left\|T(x)-T_{1}(x)\right\| & =\lim _{n \rightarrow \infty}\left\|J_{n} T(x)-J_{n} T_{1}(x)\right\| \\
& \leq \lim _{n \rightarrow \infty} \max \left\{\left\|J_{n} T(x)-J_{n} f(x)\right\|,\left\|J_{n} f(x)-J_{n} T_{1}(x)\right\|\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{|k|^{2 n}}{|2|} \max \left\{\left\|T\left(\frac{x}{k^{n}}\right)-f\left(\frac{x}{k^{n}}\right)\right\|,\left\|T\left(\frac{-x}{k^{n}}\right)-f\left(\frac{-x}{k^{n}}\right)\right\|,\right. \\
& \left.\left\|f\left(\frac{x}{k^{n}}\right)-T_{1}\left(\frac{x}{k^{n}}\right)\right\|,\left\|f\left(-\frac{x}{k^{n}}\right)-T_{1}\left(-\frac{x}{k^{n}}\right)\right\|\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{|k|^{2 n}}{|2|} \lim _{m \rightarrow \infty} \max \left\{\varphi_{-j-1}\left(k^{-n} x\right), \varphi_{-j-1}\left(-k^{-n} x\right): 0 \leq j<m\right\} \\
& =0
\end{aligned}
$$

for all $x \in V$. Therefore $T=T_{1}$. This completes the proof of the uniqueness of T.

Corollary 2.7. Let X and Y be non-Archimedean normed spaces over \mathbb{K} with $|k|<1$. If Y is complete and for some $r<2, f: X \rightarrow Y$ satisfies the condition

$$
\left\|D_{k} f(x, y)\right\| \leq \theta\left(\left\|\left.x\right|^{r}+\right\| y \|^{r}\right)
$$

for all $x, y \in X$. Then there exists a unique general quadratic-cubic mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \theta \cdot \max \left\{|2|^{-1}|k|^{-r},|2|^{-1-r}\left(1+|k|^{-r}\right), 2|2|^{-1-r}|k|^{1-r}\right\}\|x\|^{r} \tag{15}
\end{equation*}
$$

for all $x \in X$.
Proof. Let $\varphi(x, y)=\theta\left(\|x\|^{r}+\|y\|^{r}\right)$ for all $x, y \in X$. Since $|k|<1$ and $2-r>0$,

$$
\lim _{n \rightarrow \infty}|k|^{2 n} \varphi\left(k^{-n} x, k^{-n} y\right)=\lim _{n \rightarrow \infty}|k|^{n(2-r)} \varphi(x, y)=0
$$

for all $x, y \in X$. Therefore the conditions of Theorem 2.6 are fulfilled. It is easy to see that

$$
\tilde{\varphi}(x)=\theta \cdot \max \left\{|2|^{-1}|k|^{-r},|2|^{-1-r}\left(1+|k|^{-r}\right), 2|2|^{-1-r}|k|^{1-r}\right\}\|x\|^{r}
$$

for all $x \in X$. By Theorem 2.6 there is a unique general quadratic-cubic mapping $T: X \rightarrow Y$ satisfying (15).

References

[1] J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci. 133(6) (2005), 1657-1664.
[2] I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283 (2003), 491-500.
[3] Y.-J. Cho, M. Eshaghi Gordji, and S. Zolfaghari, Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces, J. Inequal. Appl. 2010 (2010), Art. ID 403101.
[4] S. Czerwik, On the stability of the quadratic mapping in the normed space, Abh. Math. Sem. Hamburg 62 (1992), 59-64.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[7] K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 867-878.
[8] K.-W. Jun and Y.-H. Lee, On the stability of a cubic functional equation, J. Chungcheong Math. Soc. 21 (2008), No. 3, 377-384.
[9] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
[10] C.-J. Lee and Y.-H. Lee, On the stability of a mixed type quadratic and cubic functional equation, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 19 (2012), 383-396.
[11] Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a quadratic and cubic functional equation, Int. J. Math. Anal. (Ruse) 12 (2018), 577-583.
[12] Y.-H. Lee and S.-M. Jung, Fuzzy stability of the cubic and quadratic functional equation, Appl. Math. Sci. (Ruse) 10 (2016), 2671-2686.
[13] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in nonArchimedean spaces, Appl. Anal. Discrete Math. 1 (2007), 325-334.
[14] J. M. Rassias, Solution of the Ulam stability problem for cubic, Glasnik Matematicki Serija III, vol. 36(56) (2001), no. 1, 63-72.
[15] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[16] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[17] W. Towanlong and P. Nakmahachalasint, A mixed-type quadratic and cubic functional equation and its stability, Thai J. Math. 8(4) (2012), 61-71.
[18] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York 1964.
[19] Z. Wang and W. X. Zhang, Fuzzy stability of quadratic-cubic functional equations, Acta Math. Sin. (Engl. Ser.) 27 (2011), 2191-2204.

Yang-Hi Lee

Department of Mathematics Education, Gonguu National University of Education, Gongju 32553, Republic of Korea

E-mail address: yanghi2@hanmail.net

[^0]: Received December 19, 2018; Revised April 4, 2019; Accepted May 8, 2019.
 2010 Mathematics Subject Classification. 39B22,39B82,39B52.
 Key words and phrases. stability; general quadratic-cubic functional equation; general quadratic-cubic mapping; direct method.

