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DEGREE OF CONVERGENCE FOR FOURIER SERIES OF

FUNCTIONS IN THE CLASS Lp-BV

Jaeman Kim

Abstract. In this paper, the author introduces the class Lp-BV of func-

tions which are of bounded variation in the sense of Lp-norm and inves-

tigates the degree of convergence for Fourier series of functions belonging
to this class.

1. Introduction

In 1881 [4], Camille Jordan who was seeking a sufficient condition for a func-
tion to have an everywhere convergent Fourier series introduced the notion of
functions of bounded variation. It is well known that functions of bounded vari-
ation have Fourier series which converge everywhere and converge uniformly on
each closed interval of continuity [11]. The concept of functions of bounded vari-
ation was generalized by many authors and in various ways [2,5,6,7,9]. These
generalizations had been studied mainly because of their applicability to the
theory of Fourier series. For instance, the Fourier series of any function of har-
monic bounded variation is everywhere pointwise convergent and in case of a
continuous function the convergence is uniform [10]. In this note, we generalize
the notion of functions of bounded variation in the mean [5] and study a suffi-
cient condition for the convergence of Fourier series of a function in Lp-norm.
In fact, we deal with functions that are of bounded variation in the sense of
Lp-norm, namely Lp-BV and investigate the degree of convergence for Fourier
series of a function belonging to the class Lp-BV .

2. Bounded variation in Lp-norm

Let f ∈ Lp[−π, π] (1 ≤ p <∞) be a 2π-periodic function and P : −π = to <
t1 < ... < tn = π be a partition of [−π, π]. Then f is said to be of bounded
variation in Lp-norm if

Vp(f) = sup{
n∑
k=1

(

∫ π

−π
|f(x+ tk)− f(x+ tk−1)|pdx)

1
p } <∞, (1)
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where the supremum is taken over all partitions P of [−π, π]. We denote the
class of all functions that are of bounded variation in Lp-norm by Lp-BV . First
of all, we have

Theorem 2.1. The class Lp-BV is a linear space.

Proof. For f, g ∈ Lp-BV and a, b ∈ R,

n∑
k=1

(

∫ π

−π
|(af + bg)(x+ tk)− (af + bg)(x+ tk−1)|pdx)

1
p

=

n∑
k=1

(

∫ π

−π
|a(f(x+ tk)− f(x+ tk−1)) + b(g(x+ tk)− g(x+ tk−1))|pdx)

1
p ,

by virtue of Minkowski inequality, the last equality leads to

≤
n∑
k=1

{|a|(
∫ π

−π
|f(x+tk)−f(x+tk−1)|pdx)

1
p+|b|(

∫ π

−π
|g(x+tk)−g(x+tk−1)|pdx)

1
p }

= |a|
n∑
k=1

(

∫ π

−π
|f(x+tk)−f(x+tk−1)|pdx)

1
p+|b|

n∑
k=1

(

∫ π

−π
|g(x+tk)−g(x+tk−1)|pdx)

1
p

≤ |a|Vp(f) + |b|Vp(g)

and this implies that af+bg is in the class Lp-BV . This completes the proof. �

Also it is easy to see that the class Lp-BV is a normed linear space equipped
with norm

||f ||Lp−BV = ||f ||p + Vp(f), (2)

where ||f ||p = (
∫ π
−π |f(x)|pdx)

1
p . In fact, we have

Theorem 2.2. The class Lp-BV with the norm || · ||Lp−BV is a Banach space.

Proof. Let {fn}n∈N be a Cauchy sequence in the class Lp-BV . Then for any
ε > 0, there exists a positive integer no such that

||fn − fm||Lp−BV < ε (3)

whenever n,m ≥ no.
It follows from (1) and (2) that we have

||fn − fm||p ≤ ||fn − fm||Lp−BV < ε.
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The last inequality implies that {fn}n∈N is a Cauchy sequence in the Lp space
which is complete. Thus limn→∞ fn exists, call it f . Taking into account Fatou’s
lemma and (1), we obtain

||fn − f ||Lp−BV ≤ lim inf
m→∞

(||fn − fm||p + Vp(fn − fm)) ≤ ε (4)

whenever n ≥ no.
From (4) it follows that

||f ||Lp−BV ≤ ||fno ||Lp−BV + ||f − fno ||Lp−BV ≤ ||fno ||Lp−BV + ε <∞.

Therefore f belongs to the class Lp-BV . This completes the proof. �

The modulus of continuity of f in Lp-norm is defined by

ωp(f, δ) = sup|t|≤δ(

∫ π

−π
|f(x+ t)− f(x)|pdx)

1
p . (5)

Setting

ψx(t) = f(x+ t) + f(x− t)− 2f(x), (6)

we define

Ωp(ψ, I) = supt,s∈I(

∫ π

−π
|ψx(t)− ψx(s)|pdx)

1
p (7)

for a subinterval I ⊂ [−π, π].

From now on, subintervals Ik,n denote [ kπn+1 ,
(k+1)π
n+1 ], k = 0, 1, ..., n. It is easy to

see that

Ωp(ψ, Ik,n) ≤ 4ωp(f,
π

n+ 1
). (8)

In the sequel, we shall see that this quantity for subintervals Ik,n of [0, π] pro-
vides the degree of convergence for Fourier series of f in Lp-norm.

Lemma 2.3. Let f belong to the class Lp-BV . Then we have

(

∫ π

−π
|sn(f, x)− f(x)|pdx)

1
p = O

( n∑
k=0

1

k + 1
Ωp(ψ, Ik,n)),

where sn(f, x) denotes the nth partial sum of Fourier series of f .

Proof. It follows from Titchmarsh [8] that

sn(f, x)− f(x) =
1

2π

∫ π

0

ψx(t)
sin(n+ 1

2 )t

sin( t2 )
dt.

Hence we have

(

∫ π

−π
|sn(f, x)− f(x)|pdx)

1
p =

1

2π
(

∫ π

−π
|
∫ π

0

ψx(t)
sin(n+ 1

2 )t

sin( t2 )
dt|pdx)

1
p ,
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by virtue of Minkowski inequality, the last equality leads to

≤ 1

2π
(

∫ π

−π
|
∫
Io,n

ψx(t)
sin(n+ 1

2 )t

sin( t2 )
dt|pdx)

1
p+

1

2π
(

∫ π

−π
|
n∑
k=1

∫
Ik,n

ψx(t)
sin(n+ 1

2 )t

sin( t2 )
dt|pdx)

1
p

≤ 1

2π
(

∫ π

−π
|
∫
Io,n

ψx(t)
sin(n+ 1

2 )t

sin( t2 )
dt|pdx)

1
p+

+
1

2π
(

∫ π

−π
|
n∑
k=1

∫
Ik,n

(ψx(t)− ψx(
kπ

n+ 1
))
sin(n+ 1

2 )t

sin( t2 )
dt|pdx)

1
p+

+
1

2π
(

∫ π

−π
|
n∑
k=1

ψx(
kπ

n+ 1
)

∫
Ik,n

sin(n+ 1
2 )t

sin( t2 )
dt|pdx)

1
p

≤ 1

2π
(

∫ π

−π
(

∫
Io,n

|ψx(t)
sin(n+ 1

2 )t

sin( t2 )
|dt)pdx)

1
p+

+

n∑
k=1

1

2π
(

∫ π

−π
(

∫
Ik,n

|ψx(t)− ψx(
kπ

n+ 1
)||
sin(n+ 1

2 )t

sin( t2 )
|dt)pdx)

1
p+

+
1

2π
(

∫ π

−π
|
n∑
k=1

ψx(
kπ

n+ 1
)

∫
Ik,n

sin(n+ 1
2 )t

sin( t2 )
dt|pdx)

1
p . (9)

Firstly, by virtue of Minkowski’s integral inequality, we get

1

2π
(

∫ π

−π
(

∫
Io,n

|ψx(t)
sin(n+ 1

2 )t

sin( t2 )
|dt)pdx)

1
p

≤ 1

2π

∫
Io,n

(

∫ π

−π
|ψx(t)

sin(n+ 1
2 )t

sin( t2 )
|pdx)

1
p dt

=
1

2π

∫
Io,n

|
sin(n+ 1

2 )t

sin( t2 )
|(
∫ π

−π
|ψx(t)|pdx)

1
p dt,

by virtue of the inequality [11]

|
sin(n+ 1

2 )t

sin( t2 )
| ≤ 2n+ 1

and the fact that ψx(0) = 0, the last equality leads to

=
1

2π

∫
Io,n

|
sin(n+ 1

2 )t

sin( t2 )
|(
∫ π

−π
|ψx(t)− ψx(0)|pdx)

1
p dt

≤ 1

2π
Ωp(ψ, Io,n)

∫
Io,n

|
sin(n+ 1

2 )t

sin( t2 )
|dt

≤ Ωp(ψ, Io,n). (10)
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Secondly, taking into account Minkowski’s integral inequality, we have
n∑
k=1

1

2π
(

∫ π

−π
(

∫
Ik,n

|ψx(t)− ψx(
kπ

n+ 1
)||
sin(n+ 1

2 )t

sin( t2 )
|dt)pdx)

1
p

≤
n∑
k=1

1

2π

∫
Ik,n

(

∫ π

−π
(|ψx(t)− ψx(

kπ

n+ 1
)||
sin(n+ 1

2 )t

sin( t2 )
|)pdx)

1
p dt

=
n∑
k=1

1

2π

∫
Ik,n

|
sin(n+ 1

2 )t

sin( t2 )
|(
∫ π

−π
|ψx(t)− ψx(

kπ

n+ 1
)|pdx)

1
p dt,

by taking into account the inequality

sin
t

2
≥ t

π
, (0 ≤ t ≤ π),

the last equality leads to

≤
n∑
k=1

1

2π
Ωp(ψ, Ik,n)

∫
Ik,n

|
sin(n+ 1

2 )t

sin( t2 )
|dt

≤
n∑
k=1

1

2k
Ωp(ψ, Ik,n). (11)

Thirdly, let us denote

Pk,n =

∫ π

kπ
n+1

sin(n+ 1
2 )t

sin( t2 )
dt.

Then it follows from summation by parts that

1

2π
(

∫ π

−π
|
n∑
k=1

ψx(
kπ

n+ 1
)

∫
Ik,n

sin(n+ 1
2 )t

sin( t2 )
dt|pdx)

1
p

=
1

2π
(

∫ π

−π
|
n∑
k=1

ψx(
kπ

n+ 1
)(Pk,n − Pk+1,n)|pdx)

1
p

=
1

2π
(

∫ π

−π
|
n∑
k=1

(ψx(
kπ

n+ 1
)− ψx(

(k − 1)π

n+ 1
))Pk,n|pdx)

1
p ,

by using the inequality [1],

|
∫ π

x

sin(n+ 1
2 )t

sin( t2 )
dt| ≤ 3π

(n+ 1
2 )x

, (0 < x ≤ π)

the last equality yields from Minkowski inequality

≤ 1

2π

n∑
k=1

6

k
(

∫ π

−π
|ψx(

kπ

n+ 1
)− ψx(

(k − 1)π

n+ 1
)|pdx)

1
p

≤ 3

π

n∑
k=1

1

k
Ωp(ψ, Ik−1,n). (12)
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Combing (9),(10),(11) and (12), we have the desired result. �

As consequences, the following theorems can be derived from lemma 2.3:

Theorem 2.4. Let f belong to the class Lp-BV . Then

(

∫ π

−π
|sn(f, x)− f(x)|pdx)

1
p = O

( n∑
k=0

1

k + 1
ωp(f,

π

n+ 1
)).

Proof. From lemma 2.3 and (8), the result follows. �

Theorem 2.5. Let f belong to the class Lp-BV . Then

(

∫ π

−π
|sn(f, x)− f(x)|pdx)

1
p = o

(
1).

Proof. It is well known [3] that for any function f ∈ Lp[−π, π]

lim
n→∞

ωp(f,
π

n+ 1
) = 0.

By considering the inequality (8), we have , for a fixed l

lim
n→∞

l∑
k=1

1

k + 1
Ωp(ψ, Ik,n) = 0.

On the other hand, from (1),(6) and (7), it follows that

n∑
k=l+1

1

k + 1
Ωp(ψ, Ik,n) ≤ 4

l + 2
Vp(f).

The right hand side of the last inequality can be made as small as we wish as
long as l is sufficiently large. Hence the claim follows. �
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