
East Asian Math. J.

Vol. 35 (2019), No. 3, pp. 277–283

http://dx.doi.org/10.7858/eamj.2019.023

A REMARK ON NILPOTENTS

Hai-lan Jin and Zhelin Piao∗

Abstract. In this article we show that direct limits do not preserve the
property that the Wedderburn radical contains all nilpotents, comparing

the fact that the NI property is preserved by direct limits.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. A nilpotent element is also said to be a
nilpotent for short. We use N(R), N∗(R), and W (R) to denote the set of all
nilpotents and the upper nilradical (i.e., the sum of all nil ideals), and the
Wedderburn radical (i.e., the sum of all nilpotent ideals) of R, respectively.
W (R) ⊆ N∗(R) ⊆ N(R) can be shown easily. Denote the n by n full (resp.,
upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)); and write
Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann}. Use eij for the matrix with
(i, j)-entry 1 and zeros elsewhere.

1. Direct limits

A ring is usually called reduced if it has no nonzero nilpotents. Following
Marks [2], a ring R is called NI if N(R) = N∗(R). It is obvious that a ring R
is NI if and only if R/N∗(R) is reduced.

The proof of the following fact is simply stated in [1, Proposition 1.1]. But,
for our purpose, we need a concrete one as is written in the following.

Proposition 1.1. The direct limit preserves the NI property.

Proof. Let D = {Ri, αij} be a direct system of NI rings Ri for i ∈ I, and ring
homomorphisms αij : Ri → Rj for each i ≤ j satisfying αij(1) = 1, where I is
a directed partially ordered set. Set R = lim−→Ri be the direct limit of D with
ιi : Ri → R and ιjαij = ιi.
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We will prove that R is an NI ring. Take x, y ∈ R. Then x = ιi(xi),
y = ιj(yj) for some i, j ∈ I; and moreover there is k ∈ I such that i ≤ k, j ≤ k,
and x = ιk(αik(xi)), y = ιk(αjk(yj)).

Define

x+ y = ιk(αik(xi) + αjk(yj)) and xy = ιk(αik(xi)αjk(yj)),

where αik(xi) and αjk(yj) are in Rk. Then R forms a ring with 0 = ιi(0) and
1 = ιi(1).

Suppose x, y ∈ N(R). Then xn = 0 = ym for some positive integers m,n.
There are i, j, k ∈ I such that x = ιi(xi), y = ιj(yj), i ≤ k, j ≤ k. Moreover

αik(xi)
n = αik(xni ) = 0 and αjk(ymj ) = αjk(yj)

m = 0,

entailing αik(xi), αjk(yj) ∈ N(Rk). But Rk is NI and so αik(xi) − αjk(yj) ∈
N(Rk). Then (αik(xi)−αjk(yj))

t = 0 for some positive integer t; hence we get

(x− y)t = ιk(αik(xi)− αjk(yj))
t = ιk((αik(xi)− αjk(yj))

t) = ιk(0) = 0,

entailing x − y ∈ N(R). Take r ∈ R. Then there exist s, h ∈ I such that r =
ιs(rs), i ≤ h, s ≤ h. Note rx = ιh(rhxh) and xr = ιh(xhrh) with xh = αih(xi)
and rh = αsh(rs). Since xh ∈ N(Rh) as above and Rh is NI, (rhxh)t1 = 0 =
(xhrh)t2 for some positive integers t1, t2. Then we obtain

(rx)t1 = ιh(rhxh)t1 = ιh((rhxh)t1) = ιh(0) = 0

and similarly (xr)t2 = 0. Therefore rx, xr are contained in N(R), proving that
R is an NI ring. �

A ring R is usually called directly finite (or Dedekind finite) if ab = 1 for
a, b ∈ R implies ba = 1. NI rings are directly finite by [1, Proposition 2.7].

Proposition 1.2. The direct limit preserves the directly finite property.

Proof. Applying the proof of Proposition 1.1, let D = {Ri, αij} be a direct
system of directly finite rings Ri for i ∈ I, and ring homomorphisms αij : Ri →
Rj for each i ≤ j satisfying αij(1) = 1, where I is a directed partially ordered
set. Set R = lim−→Ri be the direct limit of D with ιi : Ri → R and ιjαij = ιi.
We will use the addition and multiplication which are defined in the proof of
Proposition 1.1.

We will prove that R is a directly finite ring. Let xy = 1 for x, y ∈ R. Then
x = ιi(xi), y = ιj(yj) for some i, j ∈ I; and moreover there is k ∈ I such that
i ≤ k, j ≤ k, and x = ιk(αik(xi)), y = ιk(αjk(yj)), where αik(xi) and αjk(yj)
are in Rk. So xy = 1 implies

1 = ιk(αik(xi))ιk(αjk(yj)) = ιk(αik(xi)αjk(yj)),

entailing αik(xi)αjk(yj) = 1.
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SinceRk are directly finite, we get αjk(yj)αik(xi) = 1 and ιk(αjk(yj)αik(xi)) =
1. Whence we now have

1 = xy = ιk(αik(xi))ιk(αjk(yj)) = ιk(αik(xi)αjk(yj)) = ιk(αjk(yj)αik(xi))

= ιk(αjk(yj))ιk(αik(xi)) = yx.

Therefore R is a directly finite ring. �

2. NWR property

In this section we prove that the NWR property is not preserved by direct
limits, comparing with the fact that the NI property is preserved by direct limits
by Proposition 1.1.

An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R.
Similarly, left regular elements can be defined. An element is regular if it is both
left and right regular (and hence not a zero divisor).

Lemma 2.1. Let S be a domain and n ≥ 2. Then every matrix in Dn(S) with
nonzero diagonal is regular.

Proof. Let A =


a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 ∈ R with a nonzero. Assume AB =

0 for B =


b b12 b13 · · · b1n
0 b b23 · · · b2n
0 0 b · · · b3n
...

...
...

. . .
...

0 0 0 · · · b

 ∈ R. Then clearly b = 0. Assume B 6= 0.

Set s be largest such that the s-th row contains a nonzero entry, and t be largest
such that bst 6= 0 in the s-th row. Then the (s, t)-entry of AB is abst but this
is nonzero because S is a domain, contrary to AB = 0. Thus B = 0.

Next assume that BA = 0 and B 6= 0. Then b = 0 clearly. Set i be smallest
such that the i-th row contains a nonzero entry, and j be smallest such that
bij 6= 0 in the i-th row. Then the (i, j)-entry of BA is bija but this is nonzero
because S is a domain, contrary to BA = 0. Thus B = 0.

Summarizing, A is regular in R. �

A ring R shall be said to be NWR if N(R) = W (R). It is obvious that a ring
R is NWR if and only if R/W (R) is reduced. NWR rings are clearly NI, but
the converse need not hold by Proposition 1.1 and Theorem 2.2 to follow.
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Let R be a ring and a ∈ R with an = 0 for some n ≥ 1. Here if n is the least
with respect to an = 0 then n is called the index (of nilpotency) of a. Let S be
a nil subset of R. If Sk 6= 0 for all k ≥ 1 then S is said to be not of bounded
index (of nilpotency).

Theorem 2.2. The NWR property is not preserved by direct limits.

Proof. Let D be a division ring of characteristic zero and n ≥ 1. We apply the
construction in [1, Example 1.2]. Set Rn = D2n(D). Then

W (Rn) = N(Rn) = {(aij) ∈ D2n(D) | aii = 0 for all i},

and so Rn is NWR (hence NI). Next define a map σ : Rn → Rn+1 with A 7→(
A 0
0 A

)
and set R be the direct limit of Rn’s. Then R is NI by Proposition 1.

Note that Rn can be considered as a subring of Rn+1 via σ, i.e., A = σ(A) for
A ∈ Rn. This provides us with R = ∪∞n=1Rn.

Note first that every nilpotent matrix is of zero diagonal by Lemma 2.1. Take

a =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 = (e12 + e23 + e34) ∈ R2.

Then a has index 4 clearly. We will show a /∈W (R) (i.e., R is not NWR).

Compute matrices in RaR. Notice that

a =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


in R3,

hence RaR contains

e12 + e23 + e34 + e56 + e67 + e78.

Whence RaR also contains

b =



0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


,
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by multiplying a by eij ’s on the left and right. Then we have

b2 =



0 0 a13 a14
0 0 0 1 (∗)
0 0 0 0
0 0 0 0

0 0 1 2
O 0 0 0 1

0 0 0 0
0 0 0 0


and b4 =


O (∗∗)

O O


,

where O’s are zero matrices. In this situation note that (∗∗) 6= 0 since a13 6= 0
and a14 6= 0, and that the third and fourth rows of the matrix (∗) are both
nonzero. It then follows that b8 = (b4)2 = 0 and so the index of b is 8.

Write a2 = a (in R3), a3 = b, and proceed in this manner. Then we can
obtain

a3 ∈ Ra2R, a4 ∈ Ra3R, . . . , an ∈ Ran−1R, . . .

such that

an =


A B

O A


∈ Rn

with

A =



0 1 1 · · · 1
... 0 1 · · · 1
...

...
. . .

. . .
...

...
... · · ·

. . . 1
0 · · · · · · · · · 0


and B =


1 1 · · · · · · 1
1 1 · · · · · · 1
...

...
...

...
...

1 1 · · · · · · 1
0 1 · · · · · · 1

 ∈ Rn−1,

where (22, 22 + 1)-entry, (23 + 22, 23 + 22 + 1)-entry, . . ., (2n−2 + 2n−3 + · · · +
22, 2n−2 + 2n−3 + · · · + 22 + 1)-entry in A are all zero. Note that the index of
an is 2n.
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Next we get

an+1 =


an C

O an


with C =


1 1 · · · · · · 1
1 1 · · · · · · 1
...

...
...

...
...

1 1 · · · · · · 1
0 1 · · · · · · 1



in RaR by the same method. Notice that

a2
n

n+1 =


O (∗ ∗ ∗)

O O


with (∗ ∗ ∗) 6= 0

since (1, 2n)-entry and the 2n-th row of a2
n−1

n+1 are nonzero. So an+1 has index
2n+1, and consequently RaR is not of bouned index. Thus RaR is not contained
in W (R), that is, a /∈W (R). Therefore R is not NWR. �

The following is an application of [1, Proposition 4.1] onto NWR rings.

Proposition 2.3. (1) A ring R is NWR if and only if Tn(R) is NWR for all
n ≥ 2.

(2) Let R,S be rings and RMS be an (R,S)-bimodule.

(
R M
0 S

)
is NWR if

and only if R and S are both NWR.

Proof. (1) Let n ≥ 2. Note first

N(Tn(R)) = {(aij) ∈ Tn(R) | aii ∈ N(R) for all i = 1, . . . , n}.

So we get that N(R)=W(R) if and only if

N(Tn(R)) = {(aij) ∈ Tn(R) | aii ∈W (R) for all i = 1, . . . , n}.

This implies that R is NWR if and only if Tn(R) is NWR.

(2) can be proved similarly. �

However Matn(R), for any ring R and n ≥ 2, cannot be NWR because
N(Mat(R)) cannot form an ideal.
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