DOI QR코드

DOI QR Code

On the Persistence of Warm Eddies in the East Sea

동해 난수성 에디의 장기간 지속에 관하여

  • JIN, HYUNKEUN (Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology) ;
  • PARK, YOUNG-GYU (Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology) ;
  • PAK, GYUNDO (Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology) ;
  • KIM, YOUNG HO (Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology)
  • 진현근 (한국해양과학기술원 해양순환.기후연구센터) ;
  • 박영규 (한국해양과학기술원 해양순환.기후연구센터) ;
  • 박균도 (한국해양과학기술원 해양순환.기후연구센터) ;
  • 김영호 (한국해양과학기술원 해양순환.기후연구센터)
  • Received : 2019.03.14
  • Accepted : 2019.05.29
  • Published : 2019.05.31

Abstract

In this study, comparative analysis is performed on the long-term persisted warm eddies that were generated in 2003 (WE03) and in 2014 (WE14) over the East Sea using the HYCOM reanalysis data. The overshooting of the East Korea Warm Current (EKWC) was appeared during the formation period of those warm eddies. The warm eddies were produced in the shallow Korea Plateau region through the interaction of the EKWC and the sub-polar front. In the interior of the both warm eddies, a homogeneous water mass of about $13^{\circ}C$ and 34.1 psu were generated over the upper 150 m depth by the winter mixing. In 2004, the next year of the generation of the WE03, the amount of the inflow through the western channel of the Korea Strait was larger, while the inflow was lesser than its climatology during 2015 corresponding to the development period of the WE14. The above results suggest that the heat and salt are supplied in the warm eddies through the Tsushima Warm Current (TWC), however the amount of the inflow through the Korea Strait has negligible impact on the long-term persistency of the warm eddies. Both of the warm eddies were maintained more than 18 months near Ulleung island, while they have no common feature on the pathways. In the vicinity of the Ulleung basin, large and small eddies are continuously created due to the meandering of the EKWC. The long-term persisted warm eddies in the Ulleung Island seem to be the results of the interaction between the pre-existed eddies located south of the sub-polar front and fresh eddies induced by the meanderings of the EKWC. The conclusion is also in line with the fact that the long-term persisted warm eddies were not always created when the overshooting of the EKWC was appeared.

HYCOM 재분석 자료를 이용하여 동해에서 2003년과 2014년에 장기간 지속되었던 두 개의 난수성 에디를 선정하여 각각 WE03과 WE14로 명명하고 비교 분석하였다. 두 난수성 에디가 형성되는 시기는 동한난류가 평년에 비해 북상하는 것으로 나타났으며, 이들 난수성 에디는 동한난류와 아한대전선의 상호작용을 통해 상대적으로 수심이 얕은 한국대지 해역에서 생성되었다. 겨울철 연직 혼합에 의해서 난수성 에디의 중심부는 수심 150 m까지 $13^{\circ}C$, 34.1 psu 가량의 균질한 특성을 보였다. WE03이 생성된 후 이듬해인 2004년에 대한해협 서수도를 통해 동해로 유입되는 해수의 양이 평년에 비해 많았으나 WE14가 생성된 후 이듬해인 2015년에는 대한해협 서수도를 통해 동해로 유입되는 해수의 양이 평년에 비해 많지 않았다. 이에서 대마난류가 난수성 에디에 열과 염을 공급하지만, 난수성 에디의 장기 지속에는 큰 영향을 미치지 않음을 알 수 있다. 두 난수성 에디는 울릉도 부근에서 1년 6개월 이상 유지되었는데, 두 에디의 이동경로에 있어 특별한 공통점은 보이지 않았다. 울릉분지 부근에서는 동한난류의 사행 등으로 크고 작은 에디가 계속 생성된다. 장기간 존속하는 난수성 에디는 특별한 외적 요인에 의해서 생성되는 것이 아니라, 동한난류 또는 동한난류가 사행하는 과정에서 생성된 에디와의 상호작용을 통해 생성된 것으로 보인다. 동한난류가 평년에 비해 북상했던 시기에 장기간 지속된 난수성 에디가 항상 발생하지는 않았다는 점이 위와 같은 결론을 뒷받침한다.

Keywords

GHOHBG_2019_v24n2_318_f0001.png 이미지

Fig. 1. The selection process for the warm eddies. SLA maps from AVISO and HYCOM data (top), SLA anomaly patterns (middle) and meridional and zonal temperature sections from HYCOM (bottom).

GHOHBG_2019_v24n2_318_f0002.png 이미지

Fig. 2. Monthly mean temperature along with currents at 100 m for WE03.

GHOHBG_2019_v24n2_318_f0003.png 이미지

Fig. 3. Meridional (left) and zonal (right) temperature (top), salinity (middle), and velocity section across WE03 (bottom).

GHOHBG_2019_v24n2_318_f0004.png 이미지

Fig. 4. Evolution of WE03 from Jan. 2004 to July 2005. Temperature and flow at 100 m.

GHOHBG_2019_v24n2_318_f0005.png 이미지

Fig. 5. The same as fig.4, but for meridional section map.

GHOHBG_2019_v24n2_318_f0006.png 이미지

Fig. 6. Location of the center of WE03 as defined by the maximum SSHA. The sky-blue contours mean the cumulative transfer path and the numbers mean the duration in month after the formation of the WE03 in December 2003.

GHOHBG_2019_v24n2_318_f0007.png 이미지

Fig. 7. The same as Fig.2, but for WE14.

GHOHBG_2019_v24n2_318_f0008.png 이미지

Fig. 8. The same as Fig.3, but for WE14.

GHOHBG_2019_v24n2_318_f0009.png 이미지

Fig. 9. The same as Fig4 but for WE14.

GHOHBG_2019_v24n2_318_f0010.png 이미지

Fig. 10. The same as Fig.5, but for WE14.

GHOHBG_2019_v24n2_318_f0011.png 이미지

Fig. 11. The same as Fig.6, but for WE14.

GHOHBG_2019_v24n2_318_f0012.png 이미지

Fig. 12. Volume transports (top) and Temperature transports (bottom) for the western channel of the Korea Strait based on the ADCP data (Fukudome et al., 2010) from 2003 to 2005, and HYCOM data from 2003 to 2005 for WE03 and from 2014 to 2015 for WE14.

References

  1. 서성봉, 박영규, 박재훈, 이호진, Hirose N., 2013. 고해상도 해양예보모형 HYCOM에 재현된 쓰시마난류. Ocean and Polar Res., 35(2): 135-146. https://doi.org/10.4217/OPR.2013.35.2.135
  2. 홍진실, 서성봉, 전찬형, 박재훈, 박영규, 민홍식, 2016. HYCOM 재분석 자료가 재현한 동해 수온 및 염분 평가. Ocean and Polar Res., 38(4): 271-286. https://doi.org/10.4217/OPR.2016.38.4.271
  3. Chang, K.I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.K. Lee, D.R. Watts, Y.B. Kim, D.A. Mitchell, C.M. Lee, and K. Kim, 2004. Circulation and currents in the southwestern East/Japan Sea: Overview and review. Progress in Oceanography, 61: 105-156. https://doi.org/10.1016/j.pocean.2004.06.005
  4. Chang, Y.S. and Y.G. Park, 2015. Variation of Flow Properties during a Collision Event of Two Mesoscale Eddies in the Gulf Stream Region from Numerical Simulation. Ocean Sci. J., 50(3): 567-579. http://dx.doi.org/10.1007/s12601-015-0052-y.
  5. Cummings, J.A. and O.M. Smedstad, 2013. Variational Data Assimilation for the Global Ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications vol II, chapter 13, pp. 303-343.
  6. Cummings, J.A., 2005. Operational multivariate ocean data assimilation. Quart. J. Royal Met. Soc., Part C, 131(613): 3583-3604. https://doi.org/10.1256/qj.05.105
  7. Fukudome, K., J.H. Yoon, A. Ostrovskii, T. Takikawa and I.S. Han, 2010. Seasonal volume transport variation in the tsushima warm current through the Tsushima Straits from 10 Years of ADCP observations. J Oceanogr., 66(4): 539-551. https://doi.org/10.1007/s10872-010-0045-5
  8. Ichiye, T. and K. Takano, 1988. Mesoscale eddies in the Japan/East Sea. La Mer, 26: 69-75.
  9. Lee, D.K. and P. Niiler, 2010. Eddies in the southwestern East/Japan Sea. Deep Sea Research Part I: Oceanographic Research Papers, 57(10): 1233-1242. http://dx.doi.org/10.1016/j.dsr.2010.06.002.
  10. Lie, H.J. S.K. Byun, I.K. Bang and C.H. Cho, 1995. Physical Structure of Eddies in the Southwestern East Sea. Journal of the Korean Society of Oceanography, 30(3): 170-183.
  11. Maure, E.R. J. Ishizaka, C. Sukigara, Y. Mino, H. Aiki, T. Matsuno, J.I. Goes and H.R. Gomes, 2017. Mesoscale eddies control the timing of spring phytoplankton blooms: A case study in the Japan Sea. Geophysical Research Letters, 44: 11115-11124. https://doi.org/10.1002/2017GL074359
  12. Mitchell, D.A., D.R. Watts, M. Wimbush, K.L. Tracey, W.J. Teague, J.W. Book, K.I. Chang, M.S. Suk and J.H. Yoon, 2005. Upper circulation patterns in the Ulleung Basin. Deep Sea Research Part II: Topical Studies in Oceanography, 52(11-13): 1617-1638. https://doi.org/10.1016/j.dsr2.2003.09.005
  13. Moriyasu, S., 1972. The Tsushima Current. In: Stommel H, Yoshida K (Eds), Kuroshio: Its Physical Aspects. University of Tokyo Press. Tokyo.
  14. Park, Y.G., K.H. Oh, K.I. Chang and M.S. Suk, 2004. Intermediate level circulation of the southwestern part of the East/Japan Sea estimated from autonomous isobaric profiling floats. Geophysical Research Letters, 31: L13213. https://doi.org/10.1029/2004GL020424
  15. Shin, H.R., C.W. Shin, C.S. Kim, S.K. Byun and S.C. Hwang, 2005. Movement and structural variation of warm eddy WE92 for three years in the Western East/Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 52(11-13): 1742-1762. https://doi.org/10.1016/j.dsr2.2004.10.004
  16. Sugimoto, T. and H. Tameishi, 1992. Warm-core rings, streamers and their role on the fishing ground formation around Japan. Deep Sea Research Part A., 39: S183-S201. https://doi.org/10.1016/S0198-0149(11)80011-7.
  17. Sun, W., C.M. Dong, W. Tan and Y.J. He, 2019. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sensing, 11(2): 208; https://doi.org/10.3390/rs11020208
  18. Tanioka, K., 1968. On the East Korean Warm Current (Tosen Warm Current). The Oceanographical Magazine, 20: 31-38.

Cited by

  1. Influence of Sediment Resuspension on the Biological Pump of the Southwestern East Sea (Japan Sea) vol.8, 2019, https://doi.org/10.3389/feart.2020.00144
  2. Nonseasonal Variations in Near-Inertial Kinetic Energy Observed Far below the Surface Mixed Layer in the Southwestern East Sea (Japan Sea) vol.10, pp.1, 2022, https://doi.org/10.3390/jmse10010009