Fig. 1 Example photo of cracked input data and non-cracked input data
Fig. 2 Structure of Inception Model (Szegedy, 2015)
Fig. 3 Examination data for crack visualization
Table 1 Examination data for crack recognition
Table 2 Color by region of estimated probability from crack visualization
Table 3 Accuracy of each model for each examination data
Table 4 Result of crack visualization of 100px interval
Table 5 Result of crack visualization of 50px interval
Table 6 Result of crack visualization of 30px interval
Table 7 Ratio of occurrence of false positive (FP) per estimation for interval, examination data and input data per category
Table 8 Ratio of occurrence of false negative (FN) per estimation for interval, examination data and input data per category
References
- Boeing, G., and P. Waddell, 2016. New insights into rental housing markets across the United States: web scraping and analyzing craiglist rental listings. Journal of Planning Education and Research 1-20. doi:10.1177/0739456X16664789.
- Byun, G. J., H. W. Song, W. Choi, and S. M. Wu, 2000. Crack evaluation technique and crack repair of concrete structures. Magazine of the Korea Concrete Institute 12(6): 97-108. https://doi.org/10.22636/MKCI.2000.12.6.97
- Chen, G., H. Mu, D. Pommerenke, and J. L. Drewniak, 2004. Damage detection of reinforced concrete beams with novel distributed crack/strain sensors. Structural Health Monitoring 3(3): 225-243. doi:10.1177/1475921704045625.
- Chilamkurthy, S., 2019. Transfer learning tutorial, https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html. Accessed 14 Apr. 2019.
- Devikar, P., 2016. Transfer learning for image classification of various dog breeds. International Journal of Adavanced Research in Computer Engineering & Technology 5(12): 2707-2715.
- Hassan, S. I., D. L. Minh, S. H. Im, G. B. Min, J. Y. Nam, and H. J. Moon, 2018. Damage detection and classification system for swer inspection using convolutional neural networks based on deep learning. Journal of the Korea Institute of Information and Communication Engineering 22(3): 451-457. doi:10.6109/JKIICE.2018.22.3.451.
- Kang, H. K., and S. G. Hong, 2008. Causes and mitigation of concrete cracking. Magazine of the Korea Concrete Institute 20(5): 61-68. https://doi.org/10.22636/MKCI.2008.20.5.61
- Kim, W., 1995. Major causes for deterioration in concrete structures. Magazine of the Korea Conrete Institute 7(6): 14-22.
- Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 1097-1105. doi:10.1145/3065386.
- LeCun, Y., Y. Bengio, and G. Hinton, 2015. Deep learning. Nature 521(7553): 436-444. doi:10.1038/nature14539.
- Lee, B. Y., S. T. Yi, and J. K. Kim, 2007. Surface crack evaluation method in concrete structures. Journal of the Korean Society for Nondestructive Testing 27(2): 173-182.
- Lee, Y. I., B. H. Kim, and S. J. Cho, 2018. Image-based spalling detection of concrete structures using deep learning. Journal of the Korea Concrete Institue 30(1): 91-99. doi:10.4334/JKCI.2018.30.1.091.
- Pan, S. J., and Q. Yang, 2010. A Survey on transfer learning. IEEE Transactions on knowledge and data engineering 22(10): 1345-1359. doi:10.1109/TKDE.2009.191.
- Pour-Ghaz, M., A. M. Asce, T. Barret, T. Ley, N. Materer, A. Apblett, and J. Weiss, 2014. Wireless crack detection in concrete elements using conductive surface sensors and radio frequency identification technology. Journal of Materials in Civil Engineering 26(5): 923-929. doi: 10.1061/(ASCE)MT.1943-5533.0000891.
- Simard, P. Y., D. Steinkraus, and J. C. Platt, 2003. Best practices for convolutional neural networks applied to visual document analytsis. In Proceedings of the Seventh International Conference on Document Analysis and Recognition 2: 958-962. doi:10.1109/ICDAR.2003.1227801.
- Song, G., H. Gu, Y. L. Mo, T. T. C. Hsu, and H. Dhonde, 2007. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Materials and Structures 16: 959-968. doi:10.1109/ICDAR.2003.1227801.
- Suaris W., and V. Fernando, 1987. Detection of crack growth in concrete from ultrasonic intensity measurements. Materials and Structures 20: 214-220. doi:10.1007/BF02472738.
- Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition 2818-2826. doi:10.1109/CVPR.2016.308.
- Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, 2015. Going deeper with convolutions. The IEEE Conference on Computer Vision and Pattern Recognition 1-9. doi:10.1109/CVPR.2015.7298594.
- Xia, X., C. Xu, and B. Nan, 2017. Inception-v3 for flower classification. Image, Vision and Computing, 2017 2nd International Conference on IEEE 783-787. doi:10.1109/ICIVC.2017.7984661.
- Yoon, W. H., 1991. About crack of concrete structure. Magazine of the Korea Concrete Institute 3(3): 66-74. https://doi.org/10.22636/MKCI.1991.3.3.66