Fig. 1. Optical electronic-nose for screening of colorectal diseases.
Fig. 2. Experimental setup for testing optical e-nose: (a) photo of measurement system, (b) block diagram of measurement system.
Fig. 3. Voltage differences of optical gas sensor as a function of center wavelength.
Fig. 4. Cumulated output voltage difference as a function of CO2 concentrations.
Fig. 5. Principal component analysis (PCA) of CO2 and ethanol gases and mixtures of gases: Iso-propyl alcohol (IPA), methanol (M), acetone (A) and toluene (T).
Table 1. Biomarkers surveyed from the articles related to the colorectal diseases and their central absorption wavelength.
참고문헌
- I. Oakley-Girvan and S.W. Davis, "Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review", Cancer Biomark., pp. 29-39, 2018. https://doi.org/10.3233/cbm-182344
- W. Filipiak, P. Mochalski, A. Filipiak, C. Ager, R. Cumeras, C.E. Davis, A. Agapiou, K. Unterkofler, and J. Troppmair, "A compendium of volatile organic compounds (VOCs) released by human cell lines", Curr. Med. Chem., Vol. 23, No. 20, pp. 2112-2131. 2016. https://doi.org/10.2174/0929867323666160510122913
- M. D Lena, F. Porcelli, and D. F. Altomare, "Volatile organic compounds as new biomarkers for colorectal cancer: a review", Colorectal Dis., Vol.18, No. 17, pp.654-663, 2016. https://doi.org/10.1111/codi.13271
- C. L. Silva, M. Passos, and J. S. Camara, "Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry", Brit. J. Cancer, Vol.105, No. 12, pp. 1894-1904, 2011. https://doi.org/10.1038/bjc.2011.437
- I. Ahmed, R. Greenwood, B. Costello, N. Ratcliffe, and C.S. Probert, "Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease", Aliment. Pharmacol. Ther., Vol. 43, No. 5, pp. 596-611, 2016. https://doi.org/10.1111/apt.13522
- J. C. Arthur and C. Jobin, "The struggle within: microbial influences on colorectal cancer", Inflamm. Bowel Dis. Vol. 17, No. 1, pp. 396-409, 2011. https://doi.org/10.1002/ibd.21354
- C. Pagnini, V. D. Corleto, M. L. Mangoni, E. Pilozzi, M. S. Torre, R. Marchese, A. Carnuccio, E. D. Giulio, and G. F. Delle, "Alteration of local microflora and alpha-defensins hyper-production in colonic adenoma mucosa", J. Clin. Gastroenterol., Vol. 45, No. 7, pp. 602-610, 2011. https://doi.org/10.1097/MCG.0b013e31820abf29
- R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, "Microbial ecology: human gut microbes associated with obesity", Nature, Vol. 444, No. 7122, pp.1022-1023, 2006. https://doi.org/10.1038/4441022a
- E. P. Nyangale, D. S. Mottram, and G. R. Gibson, "Gut microbial activity, implications for health and disease: the potential role of metabolite analysis", J. Proteome. Res., Vol. 11, No. 12, pp. 5573-5585, 2012. https://doi.org/10.1021/pr300637d
- D. Monleon, J.M. Morales, A. Barrasa, J. A. Lopez, C. Vazquez, and B. Celda, "Metabolite profiling of fecal water extracts from human colorectal cancer", NMR Biomed. Vol. 22, No. 3, pp. 342-348, 2009. https://doi.org/10.1002/nbm.1345
- P. Louis and H. J. Flint, "Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine", FEMS Microbiol. Lett., Vol. 294, No. 1, pp. 1-8, 2009. https://doi.org/10.1111/j.1574-6968.2009.01514.x
- H. Wang, V. Tso, C. Wong, D. Sadowski, and R. N. Fedorak, "Development and validation of a highly sensitive urine-based test to identify patients with colonic adenomatous polyps", Clin. Transl. Gastroenterol., Vol. 5, No. 3, pp. e54(1)-e54(8), 2014. https://doi.org/10.1038/ctg.2014.2
- J. R. Marchesi, E. Holmes, F. Khan, S. Kochhar, P. Scanlan, F. Shanahan, I. D. Wilson, and Y. Wang, "Rapid and noninvasive metabonomic characterization of inflammatory bowel disease", J. Proteome. Res., Vol. 6, No. 2, pp. 546-551, 2007. https://doi.org/10.1021/pr060470d
- S. R. Markar, S. T. Chin, A. Romano, T. Wiggins, S. Antonowicz, P. Paraskeva, P. Ziprin, A. Darzi, and G. B. Hanna, "Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry", Ann. Surg., Vol. 269, No. 5, pp. 903-910, 2019. https://doi.org/10.1097/SLA.0000000000002539
- S. Esfahani and J. A. Covington, "Low cost optical electronic nose for biomedical applications", Proc. Eurosens., Vol.1, No. 4, pp. 589(1)-589(4), 2017.
- H. Amal, M. Leja, K. Funka, I. Lasina, R. Skapars, A. Sivins, G. Ancans, I. Kikuste, A. Vanags, I. Tolmanis, A. Kirsners, L. Kupcinskas, and H. Haick, "Breath testing as potential colorectal cancer screening tool", Int. J. Cancer, Vol. 138, No. 1, pp. 229-236, 2016. https://doi.org/10.1002/ijc.29701
- E. Westenbrink, R. P. Arasaradnam, N. O'Connell, C. Bailey, C. Nwokolo, K. D. Bardhan, and J. A. Covington, "Development and application of a new electronic nose instrument for the detection of colorectal cancer", Biosens. Bioelectron., Vol. 67, pp. 733-738, 2015. https://doi.org/10.1016/j.bios.2014.10.044
- R. P. Arasaradnam, M. J. McFarlne, C. Ryan-Fisher, E. Westenbrink, P. Hodges, M. G. Thomas, S. Chambers, N. O'connell, C. Bailey, C. Harmston, C. U. Nwokolo, K. D. Bardhan, and J. A. Covington, "Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis", PLoS One, Vol. 9, No. 9, pp. e108750(1)-e108750(6), 2014. https://doi.org/10.1371/journal.pone.0108750
- J. A. Covington, E. W. Westenbrink, N. Ouaret, R. Harbord, C. Bailey, N. O'connell, J. Cullis, N. Williams, C. U. Nwokolo, K. D. Bardhan, and R. P. Arasaradnam, "Application of a novel tool for diagnostic bile acid diarrhoea", Sensors, Vol.13, No. 9, pp. 11899-11912, 2013. https://doi.org/10.3390/s130911899
- R. P. Arasaradnam, N. Quraishi, I. Kyrou, C. U. Nwokolo, M. Joseph, S. Kumar, K. D. Bardhan, and J. A. Covington, "Insights into 'fermentonomics': evaluation of volatile organic compounds (VOCs) in human disease using an electronic 'e-nose'", J. Med. Eng. Technol., Vol. 35, No. 2, pp. 87-91, 2011. https://doi.org/10.3109/03091902.2010.539770
- J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, "Non-dispersive infra-red (NDIR) measurement of carbon dioxode at 4.2 um in a compact and optically efficient sensor", Sens. Actuator B Chem., Vol. 186, pp. 580-588, 2013. https://doi.org/10.1016/j.snb.2013.06.006
- H. Hussain, J. H. Kim, and S. H. Yi, "Characteristics and temperature compensation of non-dispersive infrared (NDIR) alcohol gas sensors according to incident light intensity, Sensors, Vol.18, No. 9, pp. 2911-2916, 2018. https://doi.org/10.3390/s18092911