DOI QR코드

DOI QR Code

Development of optimum pump operation technique for the damage rate reduction of water distribution system

상수도관망의 피해율 저감을 위한 가압장 최적운영기법 개발

  • Received : 2019.03.11
  • Accepted : 2019.04.19
  • Published : 2019.05.31

Abstract

In this study, the optimum pump operation technique is suggested to decrease the damage rate of water distribution system. Pump operation system was developed to achieve the effective pump operation. Pressure sensors which can communicate with pumps are installed at the end of water distribution system. Pump operation system can control the pressure of water pump according to data sent from the pressure sensors. Therefore, water distribution system can reduce the pressure and maintain enough pressure which can supply the demand of water users. For proving effectiveness of new system, reliability model was introduced to compare the results of damage rates between the maintaining high pressure and selective pressure in water pump. Unsteady analysis was conducted with several scenarios. And the results were used to calculate the probability of pipe breakage. From the results, it was found that new pump operation system can reduce the energy usage and probability of pipe breakage by applying to pumps.

본 연구에서는 상수도관망의 피해율 저감을 위한 최적의 펌프운영기법을 제안하였다. 펌프운영시스템은 효과적인 펌프운영을 위하여 개발되었다. 이를 위해 펌프와 소통할 수 있는 압력센서가 상수도관망의 관말단부에 설치되었다. 펌프운영시스템은 관말단의 센서로 부터 수신된 데이터를 통하여 펌프를 제어하게 된다. 따라서 펌프운영시스템은 관말단부에 충분한 유량을 전달할 수 있는 압력을 유지할 수 있고 불필요한 압력을 줄일 수 있다. 펌프운영시스템의 효과를 입증하기 위해 신뢰성해석모형이 사용되었고 기존의 펌프운영시스템과 새로운 펌프운영시스템의 운영결과를 통하여 상수도관의 파괴확률을 정량적으로 비교하였다. 이를 위해서 부정류해석을 수행하였고 그 결과는 파괴확률을 산정하는데 사용되었다. 그 결과, 새로 제시된 펌프운영시스템은 상수도관의 파괴확률을 현저히 낮출 수 있음을 확인할 수 있었다.

Keywords

SJOHCI_2019_v52n5_373_f0001.png 이미지

Fig. 1. Design point on the failure surface (Kwon, 2014)

SJOHCI_2019_v52n5_373_f0002.png 이미지

Fig. 3. Galsan pipe network and sensor location

SJOHCI_2019_v52n5_373_f0003.png 이미지

Fig. 2. Pipe thickness according to pipe pressure (D=100 mm, H=2 m)

SJOHCI_2019_v52n5_373_f0004.png 이미지

Fig. 4. Pressure head according to switch On/Off at J-34

SJOHCI_2019_v52n5_373_f0005.png 이미지

Fig. 5. Pressure head at J-34 according to selective operation of water pump pressure head of 75 m and 60 m

SJOHCI_2019_v52n5_373_f0006.png 이미지

Fig. 6. Change of pressure head at J-17 (a) 75 m pressure head of water pump (b) 60 m pressure head of water pump

SJOHCI_2019_v52n5_373_f0007.png 이미지

FIg. 7. Probability density function of surge pressure head with 75 m pressure head of water pump

SJOHCI_2019_v52n5_373_f0008.png 이미지

Fig. 9. Probability of pipe breakage according to operation condition(75 m pressure head of water pump)

SJOHCI_2019_v52n5_373_f0009.png 이미지

Fig. 10. Probability of pipe breakage according to operation condition(60 m pressure head of water pump)

SJOHCI_2019_v52n5_373_f0010.png 이미지

Fig. 11. Probability of pipe breakage according to operation condition(selective pressure head of water pump)

SJOHCI_2019_v52n5_373_f0011.png 이미지

Fig. 8. Probability density function of surge pressure head with 60 m pressure head of water pump

References

  1. Ang, A., and Tang, W. H. (1984). Probability concepts in engineering planning and design. John Wiley and Sons, Inc., New York.
  2. Cembrano, G., Wells, G., Quevedo, J., Perez, R., and Argelaguet, R. (2000). "Optimal control of a water distribution network in a supervisory control system." Control Engineering Practice, Pergamon Press Inc., Vol. 8, No. 10, pp. 1177-1188. https://doi.org/10.1016/S0967-0661(00)00058-7
  3. Frankel, E. G. (1988). Systems reliability and risk analysis. Klume Academic Publishers, USA.
  4. Karney, B. W. (1990). "Energy relations in transient closed-conduit flow." Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 10, pp. 1180-1196. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1180)
  5. Karney, B. W., and McInnis, D. (1992). "Efficient calculation of transient flow in simple pipe networks." Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 7, pp. 1014-1031. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1014)
  6. Korean Cast Iron Pipe Cooperation (2012). Handbook of ductile cast iron pipe. KCIP.
  7. Kwon, H. J. (2005). Transient flow in water distribution system. Ph. D. Thesis, University of Southern California, USA.
  8. Kwon, H. J. (2014). "Reliability model for storm sewer." Environmental Engineering and Management Journal, Vol. 13, No. 1, pp. 181-190. https://doi.org/10.30638/eemj.2014.022
  9. Lansey, K. E. (1994). "Optimal control of water supply pumping systems." Journal of water resources planning and management, ASCE, Vol. 120, No. 2, pp.17-35. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:1(17)
  10. McInnis, D., and Karney, B. W. (1995). "Transients in distribution networks: Field tests and demand models." Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 3, pp. 218-231. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:3(218)
  11. Modarres, M. (1999). Reliability engineering and risk analysis. Marcel Dekker, USA.
  12. Ostfeld, A., and Tubaltzev, A. (2008). "Ant colony optimization for least-cost design and operation of pumping water distribution systems." Journal of water resources planning and management, ASCE, Vol. 134, No. 2, pp. 107-118. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(107)
  13. Pasha, M. F. K., and Lansey, K. (2010). "Strategies for real time pump operation for water distribution systems." Proceeding of Water Distribution Systems Analysis 2010, Tucson, USA, pp. 1456-1469.
  14. Watters, G. W. (1984). Analysis and control of unsteady flow in pipeline. Butterworths, Boston.