Fig. 1. Locations of meteorological stations used in this study
Fig. 2. Probability density functions of seasonal precipitation by bias correction methods: Case of Seoul
Fig. 3. Probability density functions of seasonal precipitation by four GCMs and the observed data: Case of Seoul
Table 1. Information on four GCMs used in this study
Table 2. Description of performance indices used in this study
Table 3. Performance indices of bias correction methods
Table 4. Results of performance indices of four GCMs for 22 stations
Table 5. Priorities of GCMs by 22 stations based on performance indices
References
- Ahmed, K., Shahid, S., Chung, E. S., Wang, X. J., and Harun, S. B. (2019). "Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of pakistan." Journal of Hydrology, Vol. 570, pp. 473-485. https://doi.org/10.1016/j.jhydrol.2019.01.019
- Amit, Y., and Geman, D. (1997). "Shape quantization and recognition with randomized trees." Neural Computation, Vol. 9, No. 7, pp. 1545-1588. https://doi.org/10.1162/neco.1997.9.7.1545
- Breiman, L. (2001). "Random forest." Machine Learning, Vol. 45, No. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324
- Cannon, A. J. (2008). "Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network." Journal of Hydrometeorology, Vol. 9, pp. 1284-1300. https://doi.org/10.1175/2008JHM960.1
- Cannon, A. J. (2012). "Neural networks for probabilistic environmental prediction: Conditional Density Estimation Network Creation and Evaluation (CaDENCE) in R." Computers & Geosciences, Vol. 41, pp. 126-135. https://doi.org/10.1016/j.cageo.2011.08.023
- Chiew, F. H. S., Teng, J., Vaze, J., and Kirono, D. G. C. (2009). "Influence of global climate model selection on runoff impact assessment." Journal of Hydrology, Vol. 379, No. 1-2, pp. 172-180. https://doi.org/10.1016/j.jhydrol.2009.10.004
- Cho, J., Jung, I., Cho, W., and Hwang, S. (2018). "User-centered climate change scenarios technique development and application of Korean peninsula." Journal of Climate Change Research, Vol. 9, No. 1, pp. 13-29. https://doi.org/10.15531/ksccr.2018.9.1.13
- Dawson, C. W., Abrahart, R. J., and See, L. M., (2007). "HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts." Environmental Modelling & Software, Vol. 22, No. 7, pp. 1034-1052. https://doi.org/10.1016/j.envsoft.2006.06.008
- Dosiom, A., and Paruolo, P. (2011). "Bias correction of the ENSEMBLES high resolution climatechange projections for use by impact models:Evaluation on the present climate." Journal of Geophysical research Atmospheres, Vol. 116, No. D16, pp. 1-22.
- Eum, H. I., and Cannon, A. J. (2017). "Intercomparison of projected changes in climate extremes for South Korea: Application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International Journal of Climatology, Vol. 37, No. 8, pp. 3381-3397. https://doi.org/10.1002/joc.4924
- Grillakis, M., G., Koutroulis, A. G., and Tsanis, I. K. (2013). "Multisegment statistical bias correction of daily GCM precipitation output." Journal of Geophysical research Atmospheres, Vol. 118, No. 8, pp. 3150-3162. https://doi.org/10.1002/jgrd.50323
- Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T. (2012). "Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods." Hydrology and Earth System Sciences, Vol. 16, pp. 3383-3390. https://doi.org/10.5194/hess-16-3383-2012
- Hwang, C. L., and Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Springer-Verlag, New York..
- Hwang, S. W. (2014a). "Assessing the performance of CMIP5 GCMs for various climatic elements and indicators over the southeast US." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1039-1050 https://doi.org/10.3741/JKWRA.2014.47.11.1039
- Hwang, S. W. (2014b). "Uncertainty of climate model skills estimated using different index." Proceedings of the Korean Society of Agricultural Engineers Conference, p. 42.
- Im, E. S., Kwon, W. T., and Bae, D. H. (2006). "A study on the regional climate change scenario for impact assessment on water resources." Journal of Korea Water Resources Association, Vol. 39, No. 12, pp. 1043-1056. https://doi.org/10.3741/JKWRA.2006.39.12.1043
- Ines, A. V. M., and Hansen, J. W. (2006). "Bias correction of daily GCM rainfall for crop simulation studies." Agricultural and Forest Meteorology, Vol. 138, No. 1-4, pp. 44-53. https://doi.org/10.1016/j.agrformet.2006.03.009
- Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, p. 151.
- Lee, G., Chung, E, S., and Jun, K. S. (2013). "MCDM approach for flood vulnerability assessment using TOPSIS method with a cut level set." Journal of Korea Water Resources Association, Vol. 46, No. 10, pp.977-987. https://doi.org/10.3741/JKWRA.2013.46.10.977
- Li, H., Sheffield, J., and Wood, E. F. (2010). "Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching." Journal of Geophysical Research, Vol. 115, No. D10.
- Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005). Geographic information systems and science. Wiley, Grafos S.A.
- Masahiro, W., Tatsuo, S., Ryouta, O., Yoshiki, K., Shingo, W., Seita, E., Toshihiko, T., Minoru, C., Tomoo, O., Miho, S., Kumiko, T., Dai, Y., Tokuta, Y., Toru, N., Hiroyasu, H., Hiroaki, T., and Masahide, K. (2010). "Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity." Journal of Climate, Vol. 23, pp. 6312-6335. https://doi.org/10.1175/2010JCLI3679.1
- Mehr, A. D., and Kahya, E. (2017). "Grid-based performance evaluation of GCM-RCM combinations for rainfall reproduction." Theoretical and Applied Climatology, Vol. 129, No. 1-2, pp. 47-57. https://doi.org/10.1007/s00704-016-1758-1
- Noor, M., Ismail, T., Chung, E. S., Shahid, S., and Sung, J. H. (2018). "Uncertainty in rainfall intensity duration frequency curves of Peninsular Malaysia under changing climate scenarios." Water, Vol 10, No. 12, pp. 1-25. https://doi.org/10.3390/w10020001
- Pang, B., Yue, J., Zhao, G., and Xu, Z. (2017). "Statistical downscaling of temperature with the random forest model." Advances in Meteorology, Vol. 2017, pp. 1-11. https://doi.org/10.1155/2017/7265178
- Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerterd, J. O. (2010). "Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models." Journal of Hydrology, Vol. 395, No. 3-4, pp. 199-215. https://doi.org/10.1016/j.jhydrol.2010.10.024
- Pour, S. H., Shahida, S., and Chung, E. S. (2016). "A hybrid model for statistical downscaling of daily rainfall." Procedia Engineering, Vol. 154, pp. 1424-1430. https://doi.org/10.1016/j.proeng.2016.07.514
- Sa'adi, Z., Shahid, S., Chung, E. S., and Ismaila, T. (2017). "Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models." Atmospheric Research, Vol. 197, pp. 446-460. https://doi.org/10.1016/j.atmosres.2017.08.002
- Salman, S. A., Shahid, S., Ismail, T., Al-Abadi, A. M., Wang, X. J., and Chung, E. S. (2018). "Selection of gridded precipitation data for Iraq using compromise programming." Measurement, Vol. 132, pp. 87-98. https://doi.org/10.1016/j.measurement.2018.09.047
- Shiha, H. S., Shyurb, H. J., and Lee, E. S. (2007). "An extension of TOPSIS for group decision making." Mathematical and Computer Modelling, Vol. 45, No. 7-8, pp. 801-813. https://doi.org/10.1016/j.mcm.2006.03.023
- Shindell, D. T., Faluvegi, G., Unger, N., Aguilar, E., Schmidt, G. A., Koch, D. M., Bauer, S. E., and Miller, R. L. (2006). "Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI." Atmospheric Chemistry and Physics, Vol. 6, pp. 4427-4459. https://doi.org/10.5194/acp-6-4427-2006
- Shindell, D. T., Skeie, R. B., Sudo, K., Szopa, S., Takemura, T., and Zeng, G. (2012). "Global air quality and climate." Royal Society of Chemistry, Vol. 41, pp. 6663-6683. https://doi.org/10.1039/c2cs35095e
- Song, J. Y., and Chung, E. S. (2017). "Spatial prioritization of climate change vulnerability using uncertainty analysis of multi-criteria decision making method." Journal of Korea Water Resources Association, Vol. 50, pp. 121-128. https://doi.org/10.3741/JKWRA.2017.50.2.121
- Sung, J. H., Chung, E. S., and Shahid, S. (2018). "Reliability-Resiliency-Vulnerability approach for drought analysis in South Korea using 28 GCMs." Sustainability, Vol. 10, pp.1-16. https://doi.org/10.3390/su10020001
- Temba, N., and Chung, S. O. (2014). "Uncertainty of hydro-meteorological predictions due to climate change in the Republic of Korea." Journal of Korea Water Resources Association, Vol. 47, No. 3, pp. 257-267. https://doi.org/10.3741/JKWRA.2014.47.3.257
- Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P. (2004). "Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs." Climatic Change, Vol. 62, No. 1-3, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
- Yapo, P. O., Gupta, V. H., and Sorooshian, S. (1995). "Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data." Journal of Hydrology, Vol. 181, pp. 23-48. https://doi.org/10.1016/0022-1694(95)02918-4
- Yu, J. S., Waseem M., Shin, J. Y., and Kim T. W. (2015). "Evaluation of extended inverse distance weighting method for constructing a flow duration curve at ungauged basin." Journal of Korean Society of Safety, Vol. 15, No. 3, pp. 329-337.