DOI QR코드

DOI QR Code

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Hyeryeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 투고 : 2018.10.02
  • 심사 : 2019.04.11
  • 발행 : 2019.05.27

초록

The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

키워드

참고문헌

  1. Y. Zhao, A. M. Nardes and K. Zhu, Faraday Discuss., 176, 301 (2014). https://doi.org/10.1039/C4FD00128A
  2. T. Liu, K. Chen, Q. Hu, R. Zhu and Q. Gong, Adv. energy mater., 6, 1600457 (2016). https://doi.org/10.1002/aenm.201600457
  3. M. Gratze, Nat. Mater., 13, 838 (2014). https://doi.org/10.1038/nmat4065
  4. E. M. Sanehira, B. J. T. d. Villers, P. Schulz, M. O. Reese, S. Ferrere, K. Zhu, L. Y. Lin, J. J. Berry and J. M. Luther, ACS Energy Lett., 1, 38 (2016). https://doi.org/10.1021/acsenergylett.6b00013
  5. B. Koo, H. Jung, M. Park, J. Y. Kim, H. J. Son, J. Cho and M. J. Ko, Adv. Funct. Mater., 26, 5400 (2016). https://doi.org/10.1002/adfm.201601119
  6. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13 1764 (2013). https://doi.org/10.1021/nl400349b
  7. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok, Science, 356, 1376 (2017). https://doi.org/10.1126/science.aan2301
  8. Y. Huang, J. Zhu, Y. Ding, S. Chen, C. Zhang and S. Dai, ACS Appl. Mater. Interfaces, 8, 8162 (2016). https://doi.org/10.1021/acsami.5b08421
  9. A. Kojimam K. Teshima, Y. Shire and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). https://doi.org/10.1021/ja809598r
  10. A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase and Y. Murata, Chem. Lett., 43, 711 (2014). https://doi.org/10.1246/cl.140074
  11. S. Sidhik, D. Esparza, A. M. Benitez, T. L. Luke, R. Carriles, I. M. Sero and E. D. Rosa, J. Phys. Chem. C, 121, 4239 (2017). https://doi.org/10.1021/acs.jpcc.7b00861
  12. Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li and H. Han, J. Mater. Chem. A, 3, 9103 (2015). https://doi.org/10.1039/C4TA07030E
  13. K. Kim, T. Park and O. Song, Korean J. Met. Mater., 56, 321 (2018). https://doi.org/10.3365/KJMM.2018.56.4.321
  14. A. Frey, J. Engelhardt, G. Micard, G. Hahn and B. Terheiden, Phys. Status Solidi RRL, 10, 143 (2016). https://doi.org/10.1002/pssr.201510334