DOI QR코드

DOI QR Code

Imperfect Trust Degree based Throughput Maximization for Cooperative Communications

불완전한 신뢰도 기반 정보 처리율 최대화 협력통신 기법

  • Ryu, Jong Yeol (Department of Information and Communications Engineering, Gyeongsang National University) ;
  • Hong, Jun-Pyo (Department of Information and Communications Engineering, Pukyong National University)
  • Received : 2019.03.25
  • Accepted : 2019.04.09
  • Published : 2019.05.31

Abstract

Recently, the mobile social networks, which consider both social relationship between users and mobile communication networks, have been received great attention. In this paper, we consider the trust degree of node as the social relationship for the cooperative communication networks. In contrast to the existing works that consider the case of the perfect trust degree information, for the case that transmitter has an imperfect trust degree information, we propose an imperfect trust degree based cooperative communication technique that maximizes a throughput. We first model the imperfect trust degree information as a probability distribution and derive the outage probability using the probability distribution. Then, we propose the transmission scheme that maximizes the throughput, which consider both outage probability and transmission rate. The simulation results show that the proposed cooperative transmission scheme outperforms the conventional scheme in terms of the throughput.

최근 친밀도와 신뢰도 같은 사용자들의 사회적 관계와 모바일 통신 네트워크를 동시에 고려한 모바일 소셜 네트워크가 차세대 이동통신 네트워크 모델로 큰 관심을 받고 있다. 본 논문에서는 사회적 관계 중 신뢰도 정보를 기반으로 하는 협력통신 네트워크를 고려한다. 완벽한 신뢰도 정보를 고려했던 기존 연구들과 다르게 송신단에서 불완전한 신뢰도 정보 기반 정보 처리율 최대화 협력 통신 기법을 제안한다. 본 논문에서는 먼저 불완전한 신뢰도 정보를 확률적인 분포로 모델링하고, 신뢰도의 확률 분포를 이용하여 아웃티지 확률을 유도한다. 마지막으로 송신단에서 아웃티지 확률과 정보 전송율을 동시에 고려한 정보 처리율을 최대화하는 전송 기법을 제안한다. 시뮬레이션 결과를 통해 정보 처리율 관점에서 기존 기법들과의 비교를 통해서 제안한 협력통신 기법의 우수성을 증명한다.

Keywords

HOJBC0_2019_v23n5_589_f0001.png 이미지

Fig. 1 Cooperative communication system with trust degree information

HOJBC0_2019_v23n5_589_f0002.png 이미지

Fig. 2 Achievable rate versus average of trust degree (SNR=20dB)

HOJBC0_2019_v23n5_589_f0003.png 이미지

Fig. 3 Achievable rate versus transmit SNR ($\bar{\beta}$=0.3, 0.7)

Table. 1 Simulation Configuration

HOJBC0_2019_v23n5_589_t0001.png 이미지

References

  1. Y. Li, T. Wu, P. Hui, D. Jin, and S. Chen, "Social-aware D2D communications: qualitative insight and quantitative analysis," IEEE Communications Magazine, vol. 52, no. 6, pp. 150-158, Jun. 2014. https://doi.org/10.1109/MCOM.2014.6829957
  2. J. P. Koon, "Modelling trust in random wireless networks," in Proceeding of IEEE International Symposium on Wireless Communications Systems, Barcelona, Spain, pp. 976-981, 2014.
  3. X. Gong, X. Chen X. Gong, X. Chen, and J. Zhang, "Social group utility maximization game with applications in mobile social networks," in Proceedings of Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA., pp. 1496-1500, 2013.
  4. J. Ryu, J. Lee, and T. Quek, "Confidential cooperative communication with trust degree of potential eavesdroppers," IEEE Transactions on Wireless Communications, vol. 15 no. 6, pp. 3823-3836, Jun. 2016. https://doi.org/10.1109/TWC.2016.2530058
  5. J. Ryu, J. Lee, and T. Quek, "Trust degree based beamforming for MISO cooperative communication system," IEEE Communications Letters, vol. 19, no. 11, pp. 1957-1960, Nov. 2015. https://doi.org/10.1109/LCOMM.2015.2473160
  6. M. Vaezi, H. Inaltekin, W. Shin, H. V. Poor, and J. Zhang, "Social-aware user cooperation in full-duplex and half-duplex multi-antenna systems," IEEE Transactions on Communications, vol. 66, no. 8, pp. 3309-3321, Aug. 2018. https://doi.org/10.1109/TCOMM.2018.2821138
  7. S. Yang, "Design and implementation of cooperative context awareness inference system reflecting dynamic weight change," Journal of Security Engineering, vol. 12, no. 1, pp. 75-84, Jan. 2015. https://doi.org/10.14257/jse.2015.02.06
  8. M. Zhang, X. Chen, and J. Zhang, "Social-aware relay selection for cooperative networking: An optimal stopping approach," in Proceedings of IEEE International Conference on Communication, Sydney, Australia, 2014.
  9. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004. https://doi.org/10.1109/TIT.2004.838089
  10. J. -P. Hong, W. Choi, and B. D. Rao, "Sparsity controlled random multiple access with compressed sensing," IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 998-1010, Feb. 2015. https://doi.org/10.1109/TWC.2014.2363165
  11. S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous Multivariate Distributions, vol. 1, New York, NY: Wiley, 2000.
  12. J. Hong, "Distributed file placement and coverage expansion techniques for network throughput enhancement in small-cell network," Journal of The Korea Institute of Information and Communication Engineering, vol. 22, no. 1, pp. 183-189, Jan. 2018. https://doi.org/10.6109/JKIICE.2018.22.1.183