DOI QR코드

DOI QR Code

Modified Back-Off Algorithm to Improve Fairness for Slotted ALOHA Sensor Networks

슬롯화된 ALOHA 센서 네트워크에서 공평성 향상을 위한 변형된 백오프 알고리즘

  • Received : 2019.03.01
  • Accepted : 2019.03.24
  • Published : 2019.05.31

Abstract

In this paper, I propose an modified back-off algorithm to improve the fairness for slotted ALOHA sensor networks. In hierarchical networks, the performance degradation of a specific node can cause degradation of the overall network performance in case the data transmitted by lower nodes is needed to be synthesized and processed by an upper node. Therefore it is important to ensure the fairness of transmission performance to all nodes. The proposed scheme choose a back-off time of a node considering the previous transmission results as well as the current transmission result. Moreover a node that failed to transmit consecutively is given gradually shorter back-off time but a node that is success to transmit consecutively is given gradually longer back-off time. Through simulations, I compare and analyze the performance of the proposed scheme with the binary exponential back-off algorithm(BEB). The results show that the proposed scheme reduces the throughput slightly compared to BEB but improves the fairness significantly.

본 논문에서는 슬롯화된 ALOHA 센서 네트워크에서 노드의 전송 공평성을 향상하기 위한 변형된 백오프 알고리즘을 제안한다. 계층화된 네트워크 구조에서 하위 노드들에 의해 전송된 데이터를 종합하여 처리해야하는 경우 하위 특정 노드의 성능 저하는 전체 시스템의 성능 저하를 야기할 수 있다. 따라서 네트워크에 참여하는 모든 노드에게 공평한 전송 성능을 보장하는 것이 중요하다. 제안하는 기법에서는 현재의 전송 결과 뿐 아니라 과거의 전송 결과를 고려하여 노드의 전송 대기 시간을 선정한다. 또한 연속적으로 전송에 실패한 노드에게는 점차 짧은 대기시간을 부여하고 연속적으로 전송한 성공한 노드에게는 점차 긴 대기시간을 부여한다. 이를 통해 전송 공평성을 향상시킨다. 시뮬레이션을 통해 제안하는 기법의 성능을 대표적인 백오프 알고리즘인 BEB(binary exponential back-off) 알고리즘과 비교, 분석한다. 실험 결과 제안하는 기법을 적용했을 때 BEB에 비해 전송용량은 다소 저하(최대 5.8%, 최소 2.0%, 평균 3.0%)되지만 공평성은 크게 향상(최대 13.4%, 최소 3.6%, 평균 9.0%)됨을 확인하였다.

Keywords

HOJBC0_2019_v23n5_581_f0001.png 이미지

Fig. 1 State Transition Diagram for a node

HOJBC0_2019_v23n5_581_f0002.png 이미지

Fig. 2 The relationship among CWi, BWi and BTi in node states. BTi is selected randomly in BTi period: (a) State SS, SF, FS (b) State FF in case of CWi < CWmax (c) State FF in case of CWi = CWmax

HOJBC0_2019_v23n5_581_f0003.png 이미지

Fig. 3 Performance comparison between the proposed scheme and BEB algorithm: fairness and throughput

Table. 2 Values of BW, CW and BT

HOJBC0_2019_v23n5_581_t0001.png 이미지

Table. 1 States of nodes

HOJBC0_2019_v23n5_581_t0002.png 이미지

Table. 3 Parameter values for simulation

HOJBC0_2019_v23n5_581_t0003.png 이미지

References

  1. B. Dhanalaxmi, and G. A. Naidu, "A survey on design and analysis of robust IoT architecture," 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, pp. 375-378, 2017.
  2. A. Ahmad, S. Ahmad, M. H. Rehmani, and N. U. Hassan, "A Survey on Radio Resource Allocation in Cognitive Radio Sensor Networks," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 888-917, Secondquarter 2015. https://doi.org/10.1109/COMST.2015.2401597
  3. R. Jurdak, C. V. Lopes, and P. Baldi, "A survey, classification and comparative analysis of medium access control protocols for ad hoc networks," IEEE Communications Surveys & Tutorials, vol. 6, no. 1, pp. 2-16, First Quarter 2004.
  4. A. Laya, C. Kalalas, F. Vazquez-Gallego, L. Alonso, and J. Alonso-Zarate, "Goodbye, ALOHA!," in IEEE Access, vol. 4, pp. 2029-2044, 2016. https://doi.org/10.1109/ACCESS.2016.2557758
  5. J. Lee, H. Noh, and J. Lim, "TDMA-Based Cooperative MAC Protocol for Multi-Hop Relaying Networks," IEEE Communications Letters, vol. 18, no. 3, pp. 435-438, Mar. 2014. https://doi.org/10.1109/LCOMM.2014.011314.132095
  6. B. Shrestha, K. W. Choi, and E. Hossain, "A Dynamic Time Slot Allocation Scheme for Hybrid CSMA/TDMA MAC Protocol," IEEE Wireless Communications Letters, vol. 2, no. 5, pp. 535-538, Oct. 2013. https://doi.org/10.1109/WCL.2013.070113.130185
  7. Wei Liu, and Muqing Wu, "A hybrid tdma protocol for Ad Hoc Networks," IET International Conference on Communication Technology and Application (ICCTA 2011), Beijing, pp. 375-378, 2011.
  8. B. Shrestha, E. Hossain, and K. W. Choi, "Distributed and Centralized Hybrid CSMA/CA-TDMA Schemes for Single-Hop Wireless Networks," IEEE Transactions on Wireless Communications, vol. 13, no. 7, pp. 4050-4065, Jul. 2014. https://doi.org/10.1109/TWC.2014.2327102
  9. H. Noh, J. Lee, and J. Lim, "ANC-ALOHA: Analog Network Coding ALOHA for Satellite Networks," IEEE Communications Letters, vol. 18, no. 6, pp. 957-960, Jun. 2014. https://doi.org/10.1109/LCOMM.2014.2314309
  10. Willam Stalling, Data and Computer Communications, Prentice Hall, 2004.
  11. M. M. Rahaman, K. Ashrafuzzaman, M. S. Chowdhury, and M. O. Rahman, "Performance measurement of different backoff algorithms in IEEE 802.15.4," 2016 International Conference on Innovations in Science, Engineering and Technology (ICISET), Dhaka, pp. 1-4, 2016.
  12. Y. Neeraja, and V. Sumalatha, "An advanced wireless medium access backoff algorithm for MANETs," 2015 Science and Information Conference (SAI), London, pp. 1033-1036, 2015.
  13. F. Hong-yu, X. Lei, and L. Xiao-hui, "Logarithmic Backoff Algorithm of MAC Protocol in Ad Hoc Networks," 2010 International Conference on E-Business and E-Government, Guangzhou, pp. 1695-1698, 2010.
  14. C. Shi, X. Dai, Q. Zhou, and J. Nie, "A Novel Fixed Contention Window Backoff Algorithm for IEEE 802.11 WLAN," 2010 International Conference on Multimedia Information Networking and Security, Nanjing, pp. 174-177, 2010.