DOI QR코드

DOI QR Code

열변형 해석을 이용한 냉장고 수축팽창 소음저감

Reduction of contraction and expansion noise of refrigerator using thermal deformation analysis

  • 투고 : 2019.04.04
  • 심사 : 2019.05.20
  • 발행 : 2019.05.31

초록

본 연구에서는 수축 및 팽창 소음 발생 메커니즘을 분석하고, 냉장고 운전 중에 소음발생 빈도를 줄이기 위한 효과적인 방법을 제안하였다. 냉장고의 수축팽창음 발생 시에 제품의 품질비용 상승에 영향을 주기 때문에 저감이 필요하다. 먼저, 무향실에서 측정된 음압 신호를 이용하여 주파수 스펙트럼 분석을 수행하여 소음의 특성과 발생 빈도를 분석하였다. 둘째, 열변형 해석을 수행하여 소음원의 위치를 예측했다. 분석결과에서 가장 큰 열변형은 냉동실의 왼쪽 내부 케이스의 중간에서 발생하였다. 또한 음원 위치의 가속도 레벨을 평가한 결과, 소음을 발생시키는 내부 부품이 냉동실의 세 번째 선반임을 알 수 있었다. 냉장고의 중앙 ABS(Acrylonitrile Butadiene Styrene) 두께 증가에 의한 열변형 저감을 통하여 수축팽창음을 저감할 수 있는 방법을 제안하였다.

In this work, the mechanism of contraction and expansion noise generation is investigated, and effective methods are proposed to reduce the occurrence frequency of noise during operation of the refrigerator. First, the frequency spectrum analysis was made by using the sound pressure signal measured in an anechoic chamber to investigate the characteristic of noise and the frequency of occurrence. Second, a thermal deformation analysis was conducted to predict the location of noise source. It is found from the analysis that the biggest thermal deformation occurs in the middle of the left inner case in the freezer room. Following the investigation made, a noise reduction method is proposed. The method is proposed to reduce the contraction and expansion noise by reducing the thermal deformation through increasing ABS (Acrylonitrile Butadiene Styrene) thickness in the center of refrigerator.

키워드

GOHHBH_2019_v38n3_344_f0001.png 이미지

Fig. 1. Generation mechanism of contraction & expansion noise.

GOHHBH_2019_v38n3_344_f0002.png 이미지

Fig. 2. Experimental setup of noise measurement.

GOHHBH_2019_v38n3_344_f0003.png 이미지

Fig. 3. Time history of sound pressure level.

GOHHBH_2019_v38n3_344_f0004.png 이미지

Fig. 4. Finite element model of the refrigerator.

GOHHBH_2019_v38n3_344_f0005.png 이미지

Fig. 5. Deformation distribution of steady state thermal analysis.

GOHHBH_2019_v38n3_344_f0006.png 이미지

Fig. 6. Boundary condition.

GOHHBH_2019_v38n3_344_f0007.png 이미지

Fig. 7. Deformation distribution of the refrigerator.

GOHHBH_2019_v38n3_344_f0008.png 이미지

Fig. 8. Time history of the acceleration level for contraction & expansion noise.

GOHHBH_2019_v38n3_344_f0009.png 이미지

Fig. 9. Maximum thermal deformations for different ABS thicknessˊ.

GOHHBH_2019_v38n3_344_f0010.png 이미지

Fig. 10. Mechanism for decreasing thermal deformation.

GOHHBH_2019_v38n3_344_f0011.png 이미지

Fig. 11. Reinforcement method for reducing thermal deformation.

GOHHBH_2019_v38n3_344_f0012.png 이미지

Fig. 12. Thermal deformation distribution for local ABS thickness reinforcement on the left side in F-room.

GOHHBH_2019_v38n3_344_f0013.png 이미지

Fig. 13. Thermal deformation distribution for local ABS thickness reinforcement on the left & right side in F-room.

GOHHBH_2019_v38n3_344_f0014.png 이미지

Fig. 14. Thermal deformation distribution for local ABS thickness reinforcement on the left & right side in F & R-room.

Table 1. The frequency of occurrence of contraction & expansion noise.

GOHHBH_2019_v38n3_344_t0001.png 이미지

Table 2. Material properties.

GOHHBH_2019_v38n3_344_t0002.png 이미지

Table 3. The frequency of occurrence of contraction & expansion noise without the 3rd shelf in F-room.

GOHHBH_2019_v38n3_344_t0003.png 이미지

Table 4. Maximum thermal deformation for ABS thickness reinforcement to different positions in the refrigerator.

GOHHBH_2019_v38n3_344_t0004.png 이미지

참고문헌

  1. C. H. Lee, J. H. Jeong, and J. Y. Jeon, "Evaluation of indoor refrigerator noise in steady-state condition" (in Korean), Proc. the Trans. KSNVE., Annual Autumn Conference, 790-795 (2004).
  2. J. H. Pyo, Reduction of frictional impulse noise iInduced by thermomechanical deformations in TV sets, (MS Thesis, KAIST, 2004).
  3. J. Brecht, W. Hoffrichter, and A. Dohle, "Mechanisms of brake creep groan," No.973026. SAE, Rep., 1997.
  4. D. I. Park, A study on correlation between noise caused by stick-slip and friction characteristics, (MS Thesis, KAIST, 2005).
  5. S. S. Son, J. Y. Seo, B. Y. Lee, and W. J. Kim, "A study on the structure-bone noise reduction of refrigerators using Taguchi Method" (in Korean), Trans. Korean Soc. Noise Vib. Eng., 20, 470-476 (2010). https://doi.org/10.5050/KSNVE.2010.20.5.470
  6. ANSYS Inc., ANYSYS Workbench User's Manual, Revision 13.0, 2011.
  7. E. S. Jang, Study on the thermal strain minimization of pocket-type refrigerator door, (MS Thesis, Chonnam National University, 2008).
  8. N. J. Mills, Polymer Foams Handbook (Elsevier, Oxford, 2007), pp. 20-35.
  9. J. G. Zhai, J. R. Cho, and M. S. Roh, "Optimal inner case design for refrigerator by utilizing artificial neural networks and genetic algorithm," J. Korean Society of Marine Eng., 34, 971-980 (2010). https://doi.org/10.5916/jkosme.2010.34.7.971
  10. J. G. Zhai, J. R. Cho, W. J. Jeon, and J. H. Kim, "The study for bead effect in inner case on thermal deformation of refrigerator" (in Korean), J. Korean Soc. Precis. Eng., 28, 98-101 (2011).