
International Journal of Internet, Broadcasting and Communication Vol.11 No.2 1-10 (2019)

http://dx.doi.org/10.7236/IJIBC.2019.11.2.1

Investigating the Regression Analysis Results for Classification in Test Case

Prioritization: A Replicated Study

Muhammad Hasnain1, Imran Ghani2, Muhammad Fermi Pasha3, Ishrat Hayat Malik4, Shahzad

Malik5

1School of IT, Monash University Malaysia
2Department of Computer Science, Indiana University of Pennsylvania, USA

3School of IT, Monash University Malaysia
4School of IT, Monash University Malaysia

5NUST University Islamabad Pakistan

Muhammad.malik1@monash.edu, imransaieen@gmail.com,

muhammad.fermipasha@monash.edu, Ishrat.Malik@monash.edu,

shahzad.muet@gmail.com

Abstract

Research classification of software modules was done to validate the approaches proposed for addressing

limitations in existing classification approaches. The objective of this study was to replicate the experiments

of a recently published research study and re-evaluate its results. The reason to repeat the experiment(s) and

re-evaluate the results was to verify the approach to identify the faulty and non-faulty modules applied in the

original study for the prioritization of test cases. As a methodology, we conducted this study to re-evaluate the

results of the study. The results showed that binary logistic regression analysis remains helpful for researchers

for predictions, as it provides an overall prediction of accuracy in percentage. Our study shows a prediction

accuracy of 92.9% for the PureMVC Java open source program, while the original study showed an 82%

prediction accuracy for the same Java program classes. It is believed by the authors that future research can

refine the criteria used to classify classes of web systems written in various programming languages based on

the results of this study.

Keywords: Classification, Test Case Prioritization, Clustering, Replication, Regression Model, and Prediction

Accuracy

1. Introduction.

Classification in software engineering often used to categorize packages into faulty and non-faulty. To

categorize packages defect prediction terms are used for software quality classification [1]. In the presence of

IJIBC 19-2-1

Manuscript Received: Feb. 5, 2019 / Revised: Feb. 11, 2019 / Accepted: Feb. 17, 2019
Corresponding Author: imransaieen@gmail.com,
Tel: +1-724-599-8226, Fax: +1-724-357-2724
Department of Computer Science, Indiana University of Pennsylvania, USA

2 International Journal of Internet, Broadcasting and Communication Vol.11 No.2 1-10 (2019)

a number software prediction models, it has been left to researchers to determine which prediction models are

helpful in varying contexts. To make a clear distinction between learning problems, supervised data is known

as classification while unsupervised data is called clustering [2]. For supervised data, an object class is named

(label) in advance while for unsupervised data, an object class is not tagged in advance [3]. Therefore,

clustering terms are commonly recognized by their unsupervised classifications. Clustering in practice used to

find groups that are based on high similarities within data for the same group and low similarities between the

data of varying groups. Many clustering approaches have been undertaken in the literature including K-Means

by Joseph and Radhamani in [4] and Fuzzy C-Means (FCM) by Lu and Yan in [5]. A new version of the FCM

clustering approach was developed, called Kernel Fuzzy C-Means, which focused on overcoming the

limitations of existing clustering approaches [6]. Both, classification and clustering have become essential

components in data analytics, as well as applications based on machine learning. Besides, these classification

and clustering approach, regression analysis as a model has been used for classification of modules which are

in more technical sense termed as packages and classes. To classify the packages or classes, the prediction

accuracy is used to judge the significance of a classifying approach. Improved prediction accuracy in

percentage signifies the classification approach which is used to classify the modules. Increased prediction

accuracy of faulty and non-faulty modules helps in ensuring the quality of software. The researchers of this

study realized a few limitations of the existing research study for classification of faulty and non-faulty

modules. In this paper, the authors extends the primary study of Alsukhni et al. [7], using datasets from open

source Java programs and drawing comparisons between the results of two studies within the datasets of two

programs. This research study contributes to verifying the classification model used in a recently published

research study. The rest of the paper is organized as follows. In Section 2, the authors summarize the

background of the original study. Section 3, provides related works. Section 4, presents the experimental setup.

Section 5, discusses threats to validity, and the conclusion of this study and ideas for future work are given in

Section 6

2. Background to the original study

The Author’s goal in the original primary study was to combine the clustering and classifying approaches for

the prioritization of test cases. In order to accomplish this objective, they wanted to classify classes of two Java

programs into defective and non-defective. To predict defective classes, Alsukhni et al. in [7] used software

quality product metrics. They developed a hybrid model that combined classification and clustering of data

sets as test cases. They aimed to prioritize test cases for earlier faults detection by using the regression

classifiers and k-means clustering. The proposed approach in the above-mentioned study although showed

better performance as compared to the existing approaches, however it requires to verify the results. Average

percentage of fault detection (APFD) results indicated that testing the default modules of a software was more

useful rather than testing the all modules arbitrary. In the original study, datasets of two open sources Java

programs named “PureMVC” and “Moss” were used. The authors of the original study used open source Java

applications including the ‘Metric 1.3.8 Eclipse plug-in’ and ‘CodeProAnalytix 7.1.0’ in the Eclipse IDE to

determine metric values and generating test cases, respectively. Logistic regression approach was used to

classify defective classes from non-defective classes in two Java programs.

2.1 This Replication

The motivation for carrying out this replication was to further examine whether the use of the same dataset

results in the same metrics values, which helps authors verify the regression model for the classification of

Investigating the Regression Analysis Results for Classification in Test Case Prioritization: A Replicated Study 3

Java classes for ‘PureMVC’, which was used in the original study, and Java program ‘Log4j-1.2’, which was

not used in the original study. The authors believe that it is important to verify results and their interpretation

regarding the used regression model. The authors of this paper also wanted to confirm whether or not the

regression model used in the original study was accurately producing the same results as the replicated study.

The aim of this replicated study is to broaden the results of the original study [7] with the same datasets used

in the study as well as additional datasets. If the results are consistent, it may help other researchers in

generalizing findings in a wide range of software communities, including software developers and software

testers. If results of this replicated study are inconsistent to the original study, this may be cause to reconsider

the regression model or any other approach for improving the accuracy of the regression model for Java class

classification.

3. Related work

In this section, a brief description of clustering and software metrics related concepts is provided as follows:

3.1 Clustering and Classification Algorithms

Determining cluster centers has become an open issue for researchers as the accurate calculation of cluster

centers removes fuzziness and uncertainty related to fuzzy time series. To overcome fuzziness and related

uncertainty concerns, Saberi et al. in [8] introduced a fast and precise ‘FTS algorithm’ for addressing

classification and regression problems. In the proposed ‘Fast and Efficient Fuzzy Time Series’ FEFTS

algorithm, several clusters are composed of input data and each cluster has a specific and defined probability

density function. The output is calculated from weighted function sums for input variables. To adjust the

parameters, ‘Least Square Estimation Method’ LSEM was applied to six datasets. In order to become

familiarized with clustering in software regression testing, Hasan et al. in [9] found that test case clustering

from code coverage remained less effective for earlier fault detection in regression testing. This was due to

threats in code coverage information that consecutively revealed similar faults. Furthermore, researchers in the

lateral study also noted that similar test cases in each cluster of test cases presented the same faults. To

overcome issues with the same cluster sharing the same faults, researchers proposed a dissimilarity based TCP

approach that incorporates historical failure and similarity data from previous and new application versions.

Defects4j datasets were used by researchers to test the proposed technique and the results were compared to

other several TCP techniques. Therefore, it was found that dissimilarity based TCP techniques performed

better than random, untreated, and similarity-based TCP techniques. Wang et al. in [10] proposed an improved

Apriori algorithm for finding association rules. The association rule mines data by combining the algorithm

and model and observing vital linking among variables. With these association rules, their proposed algorithm-

based model was reconstructed in order to implement regression and classification to improve prediction

accuracy. In addition to accuracy, efficiency is a crucial factor in regression and classification. A newly

proposed classification and regression approach called ‘CRQAR-tree’ that was created in [10] and it was

mainly composed of ‘association classification’ and ‘rule-based TS fuzzy inference’ that employs quantitative

associations to enhance prediction accuracy. Although, the improved algorithm and CRQAR-tree approaches

are feasible for industrial applications, they show their limitations when used for dynamically changing

systems. It is, therefore, required to extend or increment the algorithm by investigating optimized approaches

for improving accuracy and efficiency. In an earlier study, Islam and Sakib in [11] proposed ‘Package Based

Clustering’ or PBC to predict software defects. In their proposed clustering, object-oriented classes in Java are

grouped into a number of clusters. Cluster findings were based on a working PBC that lists out all object-

4 International Journal of Internet, Broadcasting and Communication Vol.11 No.2 1-10 (2019)

oriented classes using text analysis. After reading these classes PBC extracts package information in order to

form clusters. Once clusters have been composed, researchers apply linear regression as a prediction model to

predict defects and incorporate the eight code metrics. In PBC, class identification is done via considering the

extension of files as .java. In the clustering phase, PCB allocates each identified class to a package. PBC as a

clustering model was applied to an open source software JEdit 3.2 and PBC performance was compared to the

BorderFlow and K-means algorithms. The PBC algorithm outperformed the other two algorithms in terms of

percentage performance for predicting defects in JEdit 3.2 software. However, the validation of PBC remains

to be addressed in future studies by applying it to more systems with an increased number of software

prediction metrics. Joseph and Radhamani in [4] a recently published article preferred clustering over

classification regarding test cases. The authors of the same study specifically focused on k-means, fuzzy C-

means, and Y-means clustering algorithms. The suitability of K-means algorithms for larger datasets has been

not proven; hence the researchers found that fuzzy C-means as an unsupervised clustering algorithm allows

the same item to associate with more than one cluster. Therefore, the meaning of C in clustering and fuzzy

meaning is unclear or has not been defined. Overall, the performance of the fuzzy k-means algorithm

(hybridized by k-means and fuzzy C-means) in terms of computing a large number of variables has been

improved compared to other algorithms. Before the above-mentioned fuzzy k-means clustering approach was

undertaken, Lu and Yan in [5] proposed an improved ‘fuzzy C-means’ FCM algorithm that converts clustering

problems into mathematical problems. Within the proposal of the improved FCM algorithm, granular

computing was combined with FCM to optimize cluster size and sensitivity for data initializing. The following

section gives an overview of a few important tools that have been widely used for implementing the

classification and clustering approaches.

4. Experimental set up

To perform comparisons of the existing software fault prediction approach proposed in a research study [7],

we used datasets freely available on their website as shown in Table 1. In the lateral research article, the authors

used open source software including Eclipse, Metrics Plugin 1.3.8, and CodePro AnalyticX. The purpose of

using this software is the following.

1. Eclipse provides ‘Integrated Development Environment’ IDE for the development of Java applications.

2. Metrics Plugin 1.3.8 is widely employed for calculating software attribute values.

3. CodePro AnalytiX is used to generate test cases for imported java programs in Eclipse IDE.

There are a number of classification and clustering approaches that have been widely examined in the

literature. One of these classification approaches is Logistic Regression, which was used for classifying fault

and non-fault classes by Alsukhni et al. [7] in which researcher proposed the test case prioritization technique.

To identify error prone modules in the targeted programs, they used regression analysis to classify classes into

faulty and non-faulty. In order to run experiments on two open source java program, they applied software

product metrics. To confirm the results obtained in the lateral study and various other studies, we performed

complexity and code text related metrics. To evaluate regression analysis with datasets using another program,

we selected the Log4j-1.2 an open source java program. Another program used in this study is PureMVC,

which was also used in the preliminary study [7].

Investigating the Regression Analysis Results for Classification in Test Case Prioritization: A Replicated Study 5

Table 1. Websites for Open Source Java Programs

Name of

application
Website

Log4j-1.2
https://www.apache.org/dyn/closer.lua/logging/log4j/2.10.0/apache-

log4j-2.10.0-src.zip

PureMVC https://github.com/PureMVC/puremvc-java-standard-framework

Table 1 provides information about program name and website addresses from where these java programs

can be found. The authors of this paper further classified these java programs into packages and relevant classes

as shown in Table 2 and Table 3.

Table 2. Test Cases for PureMVC Program

Application

Name
Packages Classes

Test

Cases
Issues

PureMVC org.puremvc.java.core 3 0 0

org.puremvc.java.interfaces 11 0 53

org.puremvc.java.patterns.command 2 1 5

org.puremvc.java.patterns.facade 1 5 24

org.puremvc.java.patterns.mediator 1 4 11

org.puremvc.java.patterns.observer 3 16 31

org.puremvc.java.patterns.proxy 1 6 11

Total 7 22 32 180

As shown in Table 2, after running the PureMVC program in the CodePro Analytix tool, a total 32 test cases

were generated. The number of test cases produced either by running individual packages or running all

packages together were the same. However, variance was observed in a number of issues. Table 2 shows that

22 classes from 7 packages resulted in 32 test cases and 180 issues. However, the number of issues was reduced

to 135 when running all packages at once. To determine the number of test cases for each package, we used

CodePro AnalytiX, an automated tool with various other features such as code analysis, error detection, test

generation, and code metrics. As shown in Table 2, no test cases were generated for the two classes. Therefore,

classes which resulted in generated test cases were 0, but they can be manually generated. Researchers in the

original study of Alsukhni et al. [7] reported manual test case generation for a few classes of the PureMVC

program. Similarly, for a number of packages and classes, CodePro AnalytiX cannot produce test cases for its

limitations as given in Table 3. The author of this study used the above-mentioned CodePro AnalytiX tool, as

the researchers of the original study used it to generate test cases for two open source Java programs.

Table 3. Test Cases for Log4j-1.2 Program

Application Name Packages Classes Test Cases Issues

Log4j-1.2 org.apache.log4j 14 153 217

org.apache.log4j.config 7 14 29

org.apache.log4j.helpers 2 0 0

org.apache.log4j.layout 1 0 0

org.apache.log4j.pattern 2 0 0

6 International Journal of Internet, Broadcasting and Communication Vol.11 No.2 1-10 (2019)

org.apache.log4j.spi 9 0 29

org.apache.log4j.xml 2 33 26

Total 7 37 200 301

Table 3 shows the number of packages, classes, test cases, and issues detected for the Log4j-1.2 program. As

shown in Table 3, 7 packages, 37 classes, 200 test cases, and 301 issues pertaining to Java program Log4j-1.2

were used in this study. The aim of using Log4j-1.2 Java program was to observe variance in the results by

using another open source Java program. Regarding the test cases shown in Table 3, the authors observed that

the CodePro AnalytiX tool could not generate test cases for fourteen classes. The author of this paper reported

findings on the limitations of CodePro AnalytiX. However, this limitation is out of the scope of this replication

study, as the authors were interested in classifying the classes of open source Java programs.

4.3 Comparison with the Results of the Original Study

This study did not agree with Alsukhni et al. [7] results and their interpretations in some cases. To compare

the results obtained in this study with the results of previous study, we believe that binary logistic regression

analysis provides a better prediction of Java class classifications. Overall percentage results for the

classification tables of both studies were closely related, supporting the results of Alsukhni et al. [7] for the

classification of Java classes. One of the main confusing points, which was observed is that how authors of the

earlier primary study declared java classes as faulty or non-faulty. In Table 4, the authors of this study showed

their factor studied and comparisons with the results of study [7]. The reason for using the 10 factors as given

in Table 4 was that the researchers of the original study applied them in their experiment and a few factors like

independent and dependent variables were implicitly stated. Therefore, the authors of this study focused on

these factors, which were examined in the original study and extended the original study in the context of

factors 8-9, which were not discussed in detail in the original study.

Table 4. Comparison of Results

Sr. # Studied Factors Alsukhni et al. [7] Observation

1. Java Packages Examined Confirmed

2. Java Classes Examined Confirmed

3. Classes Prediction Examined Confirmed

4. Test Cases Examined Confirmed

5. Overall Percentage Examined (named as Total) Confirmed

6. Cyclomatic complexity Examined Confirmed

7. LOC Examined Confirmed

8. Independent Variables Not Examined Not Confirmed

9. Dependent Variables Not Examined Not Confirmed

10. Java Classes Faulty Feature Not Shown Not Confirmed

Table 4 shows that the authors of this study failed to find significant differences in the studied factors of two

research studies. Therefore the studied factors (1 to 7) and their results are in line with the results of the related

study by Alsukhni et al. [7]. However, the authors of this study cannot support the experiments of Alsukhni et

al. in terms of the independent and dependent variables used for binary logistic regression analysis in [7].

Investigating the Regression Analysis Results for Classification in Test Case Prioritization: A Replicated Study 7

Researchers in the originally study did not explicitly provide detailed information on the independent and

dependent variables they used in their experiments. The results of this study differ from Alsukhni et al. [7] and

provide evidence on the use of independent and dependent variables as shown in Table 4. Overall, the majority

of the studied factors and the results obtained in this study are in line with the research study [7]. This study

was performed on Java programs, similar to the original study where researchers too used Java programs. We

tried to focus on the Java programs to see the differences in java programs’ size with the same programming

language, and module size. We changed a few metrics to see that how results are found to be different from

the results of the original study. Both of the original study and this replicated study were shown with the

common characteristics as given in Table 4. However, this study presented some of the additional results about

independent, dependent variables and java class faulty features. These additional results were missing in the

original study. Without these additional results, we were not able to see the variance in classification of faulty

and non-faulty classes regarding test cases prioritization. Figure 1 below shows support for the earlier study in

the context of the examined factors.

Figure 1. Showing Support for the Earlier Study

Figure 1 illustrates that three studied factors were not supported by results of our study. These studied factors

include ‘Independent Variables’, ‘Dependent Variables’, and ‘Java class faulty features’. Most of the studied

factors were examined in both studies and were confirmed by our results. In Table 5, the percentage accuracy

results of three open source Java programs are given. Both of the studies are consistent with the majority of

studied factors, and a few factors were not concisely evaluated in the original study. It remained as a part of

this study to include the missed factors to make this study to complement the original study. This replicated

study provided a strong support for the classification of classes regarding the software metrics and

straightforwardly letting the researchers to perform test case prioritization.

Table 5. Prediction Accuracy Results of Three Open Source Java Programs

Java

Programs

Classification Table Results

Constant Not Entered. Overall

(%) Accuracy

Predicted Classes (%)

Faulty and Non-Faulty

Original

Study
This Study

Original Study This Study

Faulty Non-Faulty Faulty Non-Faulty

PureMVC 82% 92% 82% 82% 100% 83.3%

Log4j-1.2 x 86% x x 87.5% 87.5%

Moss 93.2% x 0 100 x x

1 1 1 1 1 1 1

0 0 00 0 0 0 0 0 0

1 1 1

Support for the Earlier Study of
Alsukhni et al. [7]

Support Do not Support

8 International Journal of Internet, Broadcasting and Communication Vol.11 No.2 1-10 (2019)

Table 5 shows the overall percentage accuracy in the prediction of Java classes as faulty and non-faulty. The

PureMVC programs results show greater accuracy in this study at 92% compared to the prediction results

(82%) of the original study. For individual prediction of faulty and non-faulty classes in both primary studies,

the results of this study for faulty and non-faulty Java classes of PureMVC program show a better percentage

accuracy of 100% and 83.3%, respectively. In the original study, the percentage accuracy for the prediction of

faulty and non-faulty Java classes was reported as 82% and 82%, respectively. For Log4j-1.2 the overall

percentage accuracy remained at 86%, and the study of Log4j-1.2 was not undertaken in the original study.

This improvement in percent accuracy of faulty and non-faulty classes of Java programs is understandable

after performing the binary logistic regression analysis. In Figure 2, a graphical representation of the prediction

accuracy results undertaken in the primary studies is given.

Figure 2. Prediction Accuracy in Two Studies

Figure 2 presents the prediction accuracy in percentage results for two studies regarding PureMVC, Log4j-

1.2, and Moss. Although the prediction accuracy percentage for the Moss program has been reported as

(93.2%) in the original study, the 92% prediction accuracy for the PureMVC program in this study was far

greater than the 82% reported in the original study. In addition, the results obtained for Log4j-1.2 of 86% are

also encouraging for researchers in the context of predicting accuracy percentage, as this was better than the

PureMVC results in the original study. This confirms that the percentage prediction accuracy of the Java

programs may vary from program to program. However, for PureMVC the same program had 22 classes in

both studies, showing variations in the percentage prediction accuracy results. Improvements in percentage

prediction accuracy results might be a stimulating fact for carrying out research in regression analysis for

predicting faults in future research studies. Figure 3 shows a comparison of the original study and this study’s

results regarding faulty and non-faulty classes for the PureMVC program.

PurevMVC Log4j-1.2 Moss

Original Study 82% 0% 93.20%

This Study 92% 86% 0

82%
93.20%92%

86%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Prediction Accuracy %

Original Study This Study

Investigating the Regression Analysis Results for Classification in Test Case Prioritization: A Replicated Study 9

Figure 3. Faulty and Non-Faulty PureMVC Program in Two Studies

 Figure 3 shows predictions for the faulty and non-faulty classes of the PureMVC program in the original

study as well as this study. In both class predictions, the results of this study show improvements in predicting

classes as faulty or non-faulty over the original study. As shown in Figure 3, the prediction of faulty and non-

faulty Java classes for the PureMVC program remained at 82% for both cases, it improved to 100% and 83.30%

for faulty classes and non-faulty classes, respectively. The authors of this paper showed great interest in

replicating the results for the PureMVC and Log4j-1.2 java programs. They used the same tools that were

employed in [7] and extended their research in terms of using more statistical tests. We have found that changes

in metrics have low impacts on the statistical results which were received using the Metric 1.3.8 Eclipse plug-

in’ and ‘CodeProAnalytix 7.1.0’ programs. Binary logistic regression analysis made a little difference between

the results of two studies. Results of this study were found significant as series of statistical results provided a

clear and concise mean to understand that how faulty and non-faulty classes of Java programs were predicted.

Relative improvement in percentage accuracy in prediction might be due to arrangement of metric results, and

performing regression analysis on the data collected from metrics results.

5. Threats to Validity

The first external threat to the validity of our experiments may be the use of open source datasets, which may

have been changed, slightly impacting the results of our study. The authors of this study tried to collect datasets

that used at least one same open source Java program. Data interpretation of the statistical results may vary,

which may impact the validity of the results. In addition to above-given validity threats, there may have been

fatigue effects that result in decreased motivation. The authors have no means of measuring these fatigue

effects. They tried to minimize fatigue effects by using multiple techniques and limiting experiments to only

3 hours per day.

6. Conclusion and Future Work

This paper replicated the study of Alsukhni et al [7]. With regard to the contributions of this study, the authors

used datasets from the same java program which were used in the original study. The results obtained in this

study verify the binary logistic regression model for the classification of java classes can help in predicting

java classes as faulty or non-faulty. It has been found that the binary logistic regression model does not provide

a means of identifying java classes as faulty or non-faulty at the individual level. The significant values

confirmed that the predicted values were able to examine each category of the dependent variable. However,

a legitimate question is whether the model used for identifying faulty and non-faulty java classes in the original

Original Study This Study

PureMVC Faulty Classes 82% 100%

PureMVC Non Faulty
Classes

82% 83.30%

82%
100%

82% 83.30%

0%

50%

100%

150%

PureMVC Classes Prediction

PureMVC Faulty Classes PureMVC Non Faulty Classes

10 International Journal of Internet, Broadcasting and Communication Vol.11 No.2 1-10 (2019)

study has assumption based on some statistical results that were not shown in the original study. The replicated

study adds some concrete findings regarding the classification of Java classes using software metric values.

However, a major research area of classifying individual classes was identified, which can be addressed in

future research. Moreover, scalability of regression model can be investigated by using the large scale web

systems in future works.

References

[1] Pedrycz, W., Succi, G., & Sillitti, A. (Eds.). Computational intelligence and quantitative software

 engineering (Vol. 617). Springer. 2016.

 DOI: https://doi.org/10.1007/978-3-319-25964-2_1

[2] Celebi, M. E. (Ed.). Partitional clustering algorithms. New York. Springer. 2014.

 DOI: https://doi.org/10.1007/978-3-319-09259-1

[3] Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A….. & Lin, C. T. A review of clustering

 Techniques and developments. Neurocomputing, 267, 664-681. 2017.

 DOI: https://doi.org/10.1016/j.neucom.2017.06.053

[4] Joseph, A. K., & Radhamani, G. Hybrid Test Case Optimization Approach Using Genetic Algorithm With

 Adaptive Neuro Fuzzy Inference System for Regression Testing. Journal of Testing and Evaluation, 45(6). 2283-

 2293. 2017.

DOI: https://doi.org/10.1520/JTE20160137

[5] Lu, W. J., & Yan, Z. Z. Improved FCM algorithm based on k-means and granular computing. Journal of

 Intelligent Systems, 24(2), 215- 222. 2015.

 DOI: https://doi.org/10.1515/jisys-2014-0119

[6] Nguyen, D. D., Ngo, L. T., & Pedrycz, W. Towards hybrid clustering approach to data classification: Multiple

 kernels based interval-valued Fuzzy C-Means algorithms. Fuzzy Sets and Systems, 279, 17-39. 2015.

 DOI: https://doi.org/10.1016/j.fss.2015.01.020

[7] Alsukhni, E., Saifan, A. A., & Alawneh, H. A New Data Mining-Based Framework to Test Case Prioritization

Using Software Defect Prediction. International Journal of Open Source Software and Processes (IJOSSP), 8(1),

21-41. 2017.

DOI: 10.4018/IJOSSP.2017010102

[8] Saberi, H., Rahai, A., & Hatami, F. A fast and efficient clustering based fuzzy time series algorithm (FEFTS) for

 regression and classification. Applied Soft Computing, 61, 1088-1097. 2017.

 DOI: https://doi.org/10.1016/j.asoc.2017.09.023

[9] Hasan, M. A., Rahman, M. A., & Siddik, M. S. Test Case Prioritization Based on Dissimilarity Clustering Using

Historical Data Analysis. In International Conference on Information, Communication and Computing

Technology (pp. 269-281). Springer, Singapore. 2017.

DOI: https://doi.org/10.1007/978-981-10-6544-6_25

[10] Wang, L., Li L., Sun, H., & Peng, K. X. A classification and regression algorithm based on quantitative

 association rule tree. Journal of Intelligent & Fuzzy Systems, 31(3), 1407-1418. 2016.

 DOI: 10.3233/IFS-162207

[11] Islam, R., & Sakib, K. A Package Based Clustering for enhancing software defect prediction accuracy.

In Computer and Information Technology (ICCIT), 2014 17th International Conference on (pp. 81-86). IEEE. 2014.

 DOI: 10.1109/ICCITechn.2014.7073117

