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A NOTE ON COMPACT MÖBIUS HOMOGENEOUS

SUBMANIFOLDS IN Sn+1

Xiu Ji and TongZhu Li

Abstract. The Möbius homogeneous submanifold in Sn+1 is an orbit

of a subgroup of the Möbius transformation group of Sn+1. In this note,
We prove that a compact Möbius homogeneous submanifold in Sn+1 is

the image of a Möbius transformation of the isometric homogeneous sub-

manifold in Sn+1.

1. Introduction

A notable class of submanifolds in Möbius differential geometry is the Möbius
homogeneous submanifold in Sn+1. A submanifold f : Mm → Sn+1 in (n+ 1)-
dimensional sphere Sn+1 is called a Möbius homogeneous submanifold, if, for
any two points x, y ∈ Mm, there exists a Möbius transformation φ of Sn+1

such that φ ◦ f(Mm) = f(Mm) and φ ◦ f(x) = f(y). Let Möb(Sn+1) denote
the Möbius transformation group of Sn+1, and f : Mm → Sn+1 a Möbius
homogeneous submanifold, we define

G = {φ ∈Möb(Sn+1) |φ ◦ f(Mm) = f(Mm)}.

Then G is a subgroup of Möb(Sn+1), and the submanifold f is the orbit of the
subgroup G, i.e., f(Mm) = G · p for some point p ∈ f(Mm). The isometric
homogeneous submanifold in Sn+1 is an orbit of a subgroup of the isometric
transformation group O(n + 2) of Sn+1. It is well-known that, for n ≥ 2, the
Möbius transformation group of Sn+1 coincides with the conformal transfor-
mation group of Sn+1. Thus, O(n+ 2) ⊆Möb(Sn+1) is a subgroup.

Standard examples of the Möbius homogeneous submanifolds in Sn+1 are
the image of a Möbius transformation of the homogeneous submanifolds in
Sn+1. Due to Hsiang-Lawson ([3]) and Takagi-Takahashi ([11]), the homoge-
neous hypersurfaces in Sn+1 are classified. Every homogeneous hypersurface in
Sn+1 can be obtained as a principal orbit of a linear isotropy representation of
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a compact Riemannian symmetric pair (U,K) of rank two. Hsiang also classi-
fied the minimal homogeneous submanifolds with low cohomogeneity. But for
general homogeneous submanifolds there is no classification.

There exist some examples of Möbius homogeneous submanifolds which are
not Möbius equivalent to the homogeneous submanifolds in Sn+1. In next
proposition we give a method to construct the example (see Sect. 3). The
inverse of the stereographic projection σ : Rn+1 7→ Sn+1 is defined by

σ(u) = (
1− |u|2

1 + |u|2
,

2u

1 + |u|2
).

Proposition 1.1. Let u : Mm → Sm+1 be an immersed hypersurface. We
define the cone f over u as

f : Mm × R+ × Rn−m−1 → Rn+1, f(p, t, y) = (tu(p), y), 1 ≤ m ≤ n− 1.

If u : Mm → Sm+1 is a homogeneous hypersurface, then σ ◦ f is a Möbius
homogeneous hypersurface in Sn+1. Where R+ = {t | t > 0}.

These examples come from the homogeneous hypersurfaces in Sn+1. But
there are some examples of Möbius homogeneous hypersurfaces which can’t
be obtained in this way. In [10], Sulanke has constructed a Möbius homoge-
neous surface, which is a cylinder over a logarithmic spiral in R2, and classified
the Möbius homogeneous surfaces in R3. In [5], authors have constructed a
Möbius homogeneous hypersurface, a logarithmic spiral cylinder, which is a
high dimensional version of Sulanke’s example, and classified the Möbius ho-
mogeneous hypersurfaces in Sn+1 with two distinct principal curvatures. In
addition, in [5], authors also have classified the Möbius homogeneous hyper-
surfaces in S4. Recently, Li and Wang classified the Möbius homogeneous
hypersurfaces provided that the dimension of the hypersurface or the number
of distinct principal curvatures is small (see [4], [6]). In [7], authors classified
the Möbius homogeneous Willmore 2-spheres.

In this paper, we prove that compact Möbius homogeneous submanifolds in
Sn+1 are the homogeneous submanifolds in Sn+1 up to a Möbius transforma-
tion.

Theorem 1.1. Let f : Mm → Sn+1 be a compact Möbius homogeneous sub-
manifold. Then f is Möbius equivalent to the homogeneous submanifold in
Sn+1.

Remark 1.1. Two submanifolds f, f̃ : Mm → Sn+1 are Möbius equivalent if
there exists a Möbius transformation φ ∈ Möb(Sn+1) such that φ ◦ f(Mm) =

f̃(Mm).

Remark 1.2. By Hsiang-Lawson and Takagi-Takahashi’s work about classifica-
tion of homogeneous hypersurfaces in Sn+1, the results of Theorem 1.1 implies
that the compact Möbius homogeneous hypersurfaces are completely classified.
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We organize the paper as follows. In Section 2, we give the elementary
facts about the Möbius transformation group of Sn+1. In Section 3, we prove
Theorem 1.1 and give some example of noncompact Möbius homogeneous hy-
persurfaces by the orbit of a subgroup of the Möbius transformation group.

2. Möbius transformation group of Sn+1

In this section, we recall some facts about the Möbius transformation group
of Sn+1. For details we refer to [1], [2], or [9].

Let Rn+2 denote the (n+2)-dimensional Euclidean space, and 〈·, ·〉 its inner
product. The (n + 1)-dimensional sphere Sn+1 = {x ∈ Rn+2 | 〈x, x〉 = 1}.
The hypersphere Sp(ρ) in Sn+1 with center p ∈ Sn+1 and spherical radius
ρ, 0 < ρ < π, is the intersection of Sn+1 with the hyperplane in Rn+2 given by

Sp(ρ) = {y ∈ Sn+1 | 〈p, y〉 = cos ρ}, 0 < ρ < π.

A diffeomorphism φ : Sn+1 → Sn+1 is said to be a Möbius transformation, if
φ takes the set of hyperspheres into the set of hyperspheres. All Möbius trans-
formations form a transformation group, which is called the Möbius transfor-
mation group of Sn+1 and denoted byMöb(Sn+1). The isometric group O(n+2)
of Sn+1 is a subgroup of Möb(Sn+1).
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Let Dn+2 be the unit ball bounded by Sn+1. Taking o ∈ Rn+2\Dn+2, a line
l that passes through the point o intersects the sphere Sn+1 in two points
p, q (see above graph). Now we define the Möbius inversion Υo for the point
o ∈ Rn+2\Dn+2 as follows,

Υo : Sn+1 → Sn+1, Υo(p) = q.

Clearly, Υo ∈Möb(Sn+1). When the point o is at infinity, the Möbius inversion
Υo is an isometric transformation of Sn+1, i.e., Υo ∈ O(n + 2). The following
results is well known.

Proposition 2.1 ([1]). The Möbius transformation group Möb(Sn+1) is gen-
erated by Möbius inversions Υo.

Let Rn+3
1 be the Lorentz space, i.e., Rn+3 with the scalar product 〈·, ·〉

defined by

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xn+2yn+2

for x = (x0, x1, . . . , xn+2), y = (y0, y1, . . . , yn+2) ∈ Rn+3.
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Let O(n+ 2, 1) be the Lorentz orthogonal group of Rn+3
1 defined by

O(n+ 2, 1) = {T ∈ GL(Rn+3) |TI1T t = I1},

where T t denotes the transpose of T and I1 =
(−1 0

0 I

)
.

Let

Cn+2
+ = {y = (y0, y1) ∈ R× Rn+2 = Rn+3

1 | 〈y, y〉 = 0, y0 > 0},

and O+(n+ 2, 1) denote the subgroup of O(n+ 2, 1) defined by

O+(n+ 2, 1) = {T ∈ O(n+ 2, 1) |T (Cn+2
+ ) = Cn+2

+ }.

Proposition 2.2 ([9]). Let T = (w u
v B ) ∈ O(n+ 2, 1). Then T ∈ O+(n+ 2, 1)

if and only if w > 0.

It is well-known that the subgroup O+(n+ 2, 1) is isomorphic to the Möbius
transformation group Möb(Sn+1). In fact, for any

T =

(
w u
v B

)
∈ O+(n+ 2, 1),

we can define the Möbius transformation ϕ(T ) : Sn+1 7→ Sn+1 by

ϕ(T )(x) =
Bx+ v

ux+ w
, x = (x1, . . . , xn+2)t ∈ Sn+1.

Then the map ϕ : O+(n+ 2, 1) 7→Möb(Sn+1) is a group isomorphism.
Let A ∈ O(n + 2) be an isometric transformation of Sn+1, then A ∈

Möb(Sn+1) and

ϕ−1(A) =

(
1 0
0 A

)
.

Thus ϕ−1(O(n+ 2)) ⊂ O+(n+ 2, 1) is a subgroup.
Let

Λn+3
+ = {y = (y0, y1) ∈ R× Rn+2 = Rn+3

1 | 〈y, y〉 < 0, y0 > 0}

be the convex cone. Then O+(n+ 2, 1) acts on Λn+3
+ transitively. Since Λn+3

+

is noncompact, thus the Lie group O+(n + 2, 1) is noncompact, but O(n + 2)
is compact. The following Theorem 2.1 implies that a compact subgroup in
O+(n + 2, 1) is conjugate to a compact subgroup in ϕ−1(O(n + 2)). To prove
Theorem 2.1, we need the following lemma.

Lemma 2.1. Let H ⊂ O+(n+ 2, 1) be a subgroup. If there is a timelike vector
v0 ∈ Rn+3

1 such that

h(v0) = v0 for all h ∈ H,
then there exists T ∈ O+(n+ 2, 1) such that THT−1 be a subgroup of

ϕ−1(O(n+ 2)).
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Proof. We call assume that v0 ∈ Λn+3
+ , otherwise we take −v0 instead of v0.

Since O+(n+2, 1) acts on Λn+3
+ transitively, there exists T ∈ O+(n+2, 1) such

that

T (v0) = (a, 0, . . . , 0)t ∈ Λn+3
+ .

Thus

T (h)T−1 · (a, 0, . . . , 0)t = Th · v0 = T · v0 = (a, 0, . . . , 0)t for all h ∈ H.
Setting T (h)T−1 = (w u

v A ) . We have w = 1, u = v = 0 and A ∈ O(n+ 2), that
is THT−1 ⊂ ϕ−1(O(n+ 2)). �

Theorem 2.1. Let H ⊂ O+(n+2, 1) be a compact subgroup. Then there exists
T ∈ O+(n+ 2, 1) such that THT−1 be a subgroup of ϕ−1(O(n+ 2)).

Proof. Since H is compact, there exists a bi-invariant measure dvolh in H.
Now we take a timelike vector v0 in Λn+3

+ , define

v =

∫
H

(h · v0)dvolh.

For any h1 ∈ H,

h1(v) = h1(

∫
H

(h · v0)dvolh) =

∫
H

(h1h · v0)dvolh =

∫
H

(h1h · v0)dvolh1h = v.

Since Λn+3
+ is convex and v0 ∈ Λn+3

+ , thus v =
∫
H

(h · v0)dvolh ∈ Λn+3
+ is a

timelike vector such that h(v) = v for all h ∈ H. By Lemma 2.1 we know that
there exists T ∈ O+(n+ 2, 1) such that THT−1 ⊂ ϕ−1(O(n+ 2)). �

3. Proof of Theorem 1.1 and examples of Möbius homogeneous
hypersurfaces in Sn+1

Let f : Mm → Sn+1 be an immersed submanifold without umbilical points
and {ei | i = 1, . . . ,m} be an orthonormal basis with respect to the induced
metric I = df · df with the dual basis {θi}. Let {eα |α = m+ 1, . . . , n+ 1} be
an orthonormal basis for the normal bundle, and II =

∑
ijα h

α
ijθi ⊗ θjeα the

second fundamental form,
−→
H =

∑
i,α

hαii
m eα the mean curvature vector of f . To

study the Möbius geometry of f , as in [12], one considers the Möbius position
vector

Y = ρ(f) (1, f) : Mm → Cn+2
+ ⊂ Rn+3

1

and the Möbius metric

g = 〈dY, dY 〉 = (ρ(f))2df · df,

where (ρ(f))2 = m
m−1 (|II|2 −m|

−→
H |2). One basic fact for this approach is:

Lemma 3.1 ([12]). Suppose that f : Mm → Sn+1 is an immersed submanifold
without umbilical points and

Y = ρ(f) (1, f) : Mm → Cn+2
+ ⊂ Sn+3

1
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is the Möbius position vector of f . Then, for any T ∈ O+(n+ 2, 1), we have

T (Y ) = ρ(ϕ(T )f) (1, ϕ(T )(f)) : Mm → Cn+2
+ ⊂ Sn+3

1

and therefore the Möbius metric g stays invariant.

Theorem 3.1 ([12]). Two submanifolds f, f̃ : Mm → Sn+1 are Möbius equiv-

alent if and only if there exists T ∈ O+(n+ 2, 1) such that Ỹ = T (Y ).

Next we prove Theorem 1.1. Let f : Mm → Sn+1 be a compact Möbius
homogeneous submanifold. If there are umbilical points, then the submanfold
f is totally umbilical. Thus f is a homogeneous submanifold in Sn+1.

Now let f : Mm → Sn+1 be a compact Möbius homogeneous submanifold
without umbilical points. Thus Y : Mm → Cn+2

+ is compact and the Möbius
metric g is a Riemannian metric. Let

G = {φ ∈Möb(Sn+1) |φ ◦ f(Mm) = f(Mm)}

and Gp = {φ ∈ G |φ ◦ f(p) = f(p)} be a stabilizer subgroup for some p ∈Mm.
Then

Y (Mm) =
ϕ−1(G)

ϕ−1(Gp)
.

Since the Riemannian metric g is invariant under ϕ−1(G), The stabilizer sub-
group ϕ−1(Gp) is a compact subgroup. Since the quotient map

π : ϕ−1(G)→ Y (Mm) =
ϕ−1(G)

ϕ−1(Gp)

is an open map and Y (Mm) is compact, ϕ−1(G) is compact. Since the subgroup
ϕ−1(G) ⊂ O+(n+ 2, 1) is compact, by Theorem 2.1, we know that there exists
T ∈ O+(n + 2, 1) such that ϕ(T (ϕ−1(G))T−1) ⊂ O(n + 2) is a subgroup of
isometric transformation group O(n + 2). Thus f is Möbius equivalent to the
homogeneous submanifold in Sn+1 and we finish the proof of Theorem 1.1.

Next, we construct some examples of Möbius homogeneous hypersurfaces.

Example 3.1. Let u : Mk → Sk+1 be a homogeneous hypersurface in (k+ 1)-
dimensional sphere. Then there exists a subgroup H ⊂ O(k+ 2) which acts on
u(Mk) transitively.

We define the cone over u as

f : Mk × R+ × Rn−k−1 → Rn+1, f(x, t, y) = (tu(x), y), 1 ≤ k ≤ n− 1,

then the hypersurface σ ◦ f : Mk × R+ × Rn−k−1 → Sn+1 is a Möbius homo-
geneous hypersurface in Sn+1.

Let

G =

{(
O+(n− k, 1)

H

)}
⊂ O+(n+ 2, 1).

Then G is a subgroup of O+(n+ 2, 1).
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In fact, the hypersurface σ ◦ f : Mk ×R+ × Rn−k−1 → Sn+1 is the orbit of
the subgroup ϕ(G) ⊂Möb(Sn+1) acting on the point

p = (0, , 0, . . . ,
1√

1 + r2︸ ︷︷ ︸
n−k+1

,
r√

1 + r2
, 0, . . . , 0︸ ︷︷ ︸

k+1

) ∈ Sn+1.

Example 3.2. Let γ : I → R2 be the logarithmic spiral in the Euclidean plane
R2 given by

γ(s) = (ecs cos s, ecs sin s), c > 0.

The cylinder in Rn+1 over γ(s) is defined by

f = (γ, id) : I × Rn−1 7→ Rn+1,

f(s, y) = f(s, y1, . . . , yn−1) = (ecs cos s, ecs sin s, y1, . . . , yn−1) ∈ Rn+1.

We call the hypersurface f a logarithmic spiral cylinder. The logarithmic spiral
cylinder f = (γ, id) is a Möbius homogeneous hypersurface in Rn+1. The
hypersurface σ ◦ f is a Möbius homogeneous hypersurface in Sn+1.

g (U,K) (m1,m2) Mn = K/K0

1 (S1 × SO(n+ 2), SO(n+ 1)) n Sn

2

(SO(p+ 2)× SO(n+ 2− p),
SO(p+ 1)× SO(n+ 1− p))

1 ≤ p ≤ n− 1

(p, n− p) Mn = Sp × Sn−p

3 (SU(3), SO(3)) (1, 1) M3 = SO(3)
Z2+Z2

3 (SU(3)× SU(3), SU(3)) (2, 2) M6 = SU(3)
T 2

3 (SU(6), Sp(3)) (4, 4) M12 = Sp(3)
Sp(1)3

3 (E6, F4) (8, 8) M24 = F4

Spin(8)

4 (SO(5)× SO(5), SO(5)) (2, 2) M8 = SO(5)
T 2

4
(SU(m+ 2),

S(U(m)× U(2))),m ≥ 2
(2, 2m− 3) M4m−2 = S(U(m)×U(2))

SU(m−2)×T 2

4
(SO(m+ 2),

SO(m)× SO(2)),m ≥ 3
(1,m− 2) M2m−2 = SO(m)×SO(2))

SO(m−2)×Z2

4
(Sp(m+ 2),

Sp(m)× Sp(2)),m ≥ 2
(4, 4m− 5) M8m−2 = Sp(m)×Sp(2))

Sp(m−2)×Sp(1)2

4 (SO(10), U(5)) (4, 5) M18 = U(5)
SU(2)×SU(2)×T 1

4 (E6, Spin(10) · T ) (6, 9) M30 = Spin(10)·T
SU(4)·T

6 (G2 ×G2, G2) (2, 2) M12 = G2

T 2

6 (G2, SO(4)) (1, 1) M6 = SO(4)
Z2+Z2
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Let

G(s, y) =





1+|y|2+e2cs
2ecs

1+|y|2−e2cs
2ecs 0 0 y1 · · · yn−1

1−|y|2−e2cs
2ecs

1−|y|2+e2cs
2ecs 0 0 −y1 · · · −yn−1

0 0 cos s − sin s 0 · · · 0

0 0 sin s cos s 0
. . . 0

y1
ecs

y1
ecs 0 0 1 · · · 0

...
...

...
...

...
. . .

...
yn−1

ecs
yn−1

ecs 0 0 0 · · · 1




,

then G is a subgroup of O+(n+ 2, 1).
The logarithmic spiral cylinder σ ◦ f is the orbit of the subgroup ϕ(G) ⊂

Möb(Sn+1) acting on the point p = (1, 0, . . . , 0) ∈ Sn+1.
The above two examples of Möbius homogeneous hypersurfaces are noncom-

pact. By Theorem 1.1, the compact Möbius homogeneous hypersurfaces are
Möbius equivalent to the homogeneous submanifolds in Sn+1.

The homogeneous hypersurfaces in Sn+1 are the isoparametric hypersurfaces.
By Müzner’s result ([8]), the number g of distinct principal curvatures must
be 1, 2, 3, 4 or 6, and the distinct principal curvatures have the multiplicities
m1 = m3 = · · · , m2 = m4 = · · · . Next we list all homogeneous hypersurfaces
in Sn+1.
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