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SOME REMARKS ON SUMSETS AND RESTRICTED

SUMSETS
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Abstract. Let A be a finite set of integers. For any integer h ≥ 1, let

h-fold sumset hA be the set of all sums of h elements of A and let h-fold
restricted sumset h∧A be the set of all sums of h distinct elements of A.

In this paper, we give a survey of problems and results on sumsets and
restricted sumsets of a finite integer set. In details, we give the best lower

bound for the cardinality of restricted sumsets 2∧A and 3∧A and also

discuss the cardinality of restricted sumset h∧A.

1. Introduction

Let N denote the set of all nonnegative integers. Let A be a finite nonempty
integer set and let l(A) denote the difference of the largest and the smallest
elements of A. For any finite set of integers A and any positive integer h ≥ 1,
define

hA = {a1 + · · ·+ ah : ai ∈ A(1 ≤ i ≤ h)},
h∧A = {a1 + · · ·+ ah : ai ∈ A(1 ≤ i ≤ h), ai 6= aj for all i 6= j}.

Here, h∧A = ∅ if |A| < h. Let A,B be sets of integers, define

A + B = {a + b : a ∈ A, b ∈ B}.
Sumsets are one of the central objects of study in additive number theory.
Nathanson [12] proved the following fundamental and important results:

Theorem A ([12], Theorem 1.3). Let h ≥ 2 be an integer and A a finite set
of integers with |A| = k. Then

|hA| ≥ hk − h + 1.

Theorem B ([12], Theorem 1.6). Let h ≥ 2 be an integer and A a finite set
of integers with |A| = k. Then

|hA| = hk − h + 1
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if and only if A is a k-term arithmetic progression.

In 1995, Nathanson [11] considered the set of all sums of distinct elements
of A. He obtained a lower bound for |h∧A| and determined the structure of
the finite sets A of integers for which |h∧A| is minimal.

Theorem C ([11], Theorem 1). Let A be a set of k integers and let 1 ≤ h ≤ k.
Then

|h∧A| ≥ hk − h2 + 1.

Theorem D ([11], Theorem 2). Let k ≥ 5 and let 2 ≤ h ≤ k− 2. If A is a set
of k integers such that

|h∧A| = hk − h2 + 1,

then A is an arithmetic progression.

In 2014, Mistri and Pandey [9] generalized the above results. In 2015, Yang
and Chen [15] generalized the results of Nathanson, and the results of Mistri
and Pandey [9] which was actually proposed in [9], by Mistri and Pandey.

In 1959, Freiman [2] proved the following result:

Theorem E. Let k ≥ 3. Let A = {a0, a1, . . . , ak−1} be a set of integers such
that 0 = a0 < a1 < · · · < ak−1. We have

(i) If ak−1 ≥ 2k − 3 and gcd(a1, . . . , ak−1) = 1, then |2A| ≥ 3k − 3.
(ii) If ak−1 = k− 1 + r ≤ 2k− 3 with r ∈ [0, k− 2], then |2A| ≥ 2k− 1 + r =

k + ak−1.

Theorem E shows that if |A| = k and |2A| ≤ 3k − 4, then A is a subset of a
short arithmetic progression. Moreover, Theorem E(ii) can be extend to h ≥ 2
under the condition ak−1 ≤ 2k − 3 (see [12], Exercise 1.9.17).

Theorem F. Let h ≥ 2 and k ≥ 3. Let A = {a0, a1, . . . , ak−1} be a set of
integers such that 0 = a0 < a1 < · · · < ak−1. If ak−1 = k− 1 + r ≤ 2k− 3 with
r ∈ [0, k − 2], then |hA| ≥ k + (h− 1)ak−1.

In 1962, Freiman [3] generalized Theorem E to the case of two sets.

Theorem G. Let A = {a1, . . . , ak} and B = {b1, . . . , bl} be two sets of in-
tegers. If ak ≤ k + l − 3, then |A + B| ≥ ak + l. If ak ≥ k + l − 2 and
(a1, . . . , ak, b1, . . . , bl) = 1, then |A + B| ≥ k + l + min{k, l} − 3.

There is a certain number of beautiful articles on this topic, see ([1], [4,5,7,8],
[10], [13, 14]).

In this paper, we give the best lower bound for the cardinality of restricted
sumsets 2∧A and 3∧A under the condition l(A) ≤ 2|A| − 5. The paper is
organized as follows. In Section 2, we focus on the cardinality of restricted
sumset 2∧A. In Section 3, we focus on the cardinality of restricted sumset
3∧A. In Section 4, we give a remark on the cardinality of restricted sumset
h∧A.
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2. The cardinality of restricted sumset 2∧A

The proof of Theorem 2.1 (which is actually an exercise in Nathanson’s
book [12]) have been already appeared in the article [6]. Here we give a simple
combinatorial proof which was given by the anonymous referee in commenting
on the first version of our manuscript.

Theorem 2.1. Let A be a finite nonempty integer set with |A| ≥ 4. If l(A) ≤
2|A| − 5, then |2∧A| ≥ |A|+ l(A)− 2.

Proof. Without loss of generality, we may assume that {0, l(A)} ⊂ A ⊂ [0, l(A)]
and l(A) ≤ 2|A| − 5. Put B := [0, l(A)] \A. We shall show that for each b ∈ B
one has {b, b + l(A)} ∩ 2∧A 6= ∅. Suppose that there exists an integer b ∈ B
such that neither b nor b + l(A) lie in 2∧A, then by the pigeonhole principle,
we have ∣∣[0, b] ∩A

∣∣ ≤ b

2
+ 1 and

∣∣[b, l(A)] ∩A
∣∣ ≤ l(A)− b

2
+ 1.

Thus

|A| ≤ l(A)

2
+ 2,

which contradicts with the assumption l(A) ≤ 2|A| − 5.
Since {a, a + l(A)} ∪ {l(A)} ⊂ 2∧A whenever a ∈ A \ {0, l(A)}, this gives

|2∧A| ≥ 2|A| − 3. And when b ∈ B, we have {b, b + l(A)} ∩ 2∧A 6= ∅, hence

|2∧A| ≥ 2|A| − 3 + |B|
= 2|A| − 3 + l(A) + 1− |A|
= l(A) + |A| − 2. �

Remark 2.1. The lower bound in Theorem 2.1 is best possible. For example,
let A = {0, 2, 3, 4, 5}, we have 2∧A = {2, 3, 4, 5, 6, 7, 8, 9} and |2∧A| = 8 =
|A|+ l(A)− 2.

Remark 2.2. The assumption l(A) ≤ 2|A| − 5 can not be relaxed in Theorem
2.1. For example, let A = {0, 1, l(A)−2, l(A)−1, l(A)} with l(A) ≥ 2|A|−4 = 6.
Then

2∧A = {1, l(A)− 2, l(A)− 1, l(A), l(A) + 1, 2l(A)− 3, 2l(A)− 2, 2l(A)− 1}

and |2∧A| = 8 < |A|+ l(A)− 2.

3. The cardinality of restricted sumset 3∧A

Theorem 3.1. Let A be a finite nonempty integer set with |A| ≥ 5. If l(A) ≤
2|A| − 5, then |3∧A| ≥ 2|A|+ l(A)− 7.

Proof. Let |A| = k, we may assume that A = {a0, a1, . . . , ak−1} with 0 = a0 <
a1 < · · · < ak−1 ≤ 2|A| − 5. Then l(A) = ak−1. Define r by ak−1 = k − 1 + r,
and let B = [0, ak−1] \A.
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Consider the set

T = {a1 + ai : i = 2, . . . , k − 2} ∪ {ai + ak−1 : i = 1, . . . , k − 2}
∪ {ai + ak−2 + ak−1 : i = 1, . . . , k − 3}.

Then |T | = 3|A| − 8. Since B = [0, ak−1] \A, we have |B| = ak−1 + 1− k = r.
By the proof of Theorem 2.1, we have 2∧A ∩ {b, b + ak−1} 6= ∅ for each b ∈ B.

If b ∈ 2∧A, then b = ai + aj , where ai, aj < ak−1 and ai 6= aj . Thus
b + ak−1 = ai + aj + ak−1 ∈ 3∧A.

If b + ak−1 ∈ 2∧A, then b + ak−1 = ai + aj , where ai, aj < ak−1. Thus
b + 2ak−1 = ai + aj + ak−1 ∈ 3∧A. Hence 3∧A ∩ {b + ak−1, b + 2ak−1} 6= ∅ for
each b ∈ B.

Next, we shall prove |3∧A \ T | ≥ r.
Case 1. b + ak−1 ∈ 3∧A. If b + ak−1 /∈ T , then b + ak−1 ∈ 3∧A \ T . Noting

that b+ak−1 6= ai+ak−1(i = 1, . . . , k−2), we consider the following four cases.
Case 1.1. b+ ak−1 = a1 + ai(i = 2, . . . , k− 3). Then b+ 2ak−1 = a1 + ai +

ak−1(i = 2, . . . , k − 3). Since

ak−2 + ak−1 < b + 2ak−1 < a1 + ak−2 + ak−1,

we have b + 2ak−1 ∈ 3∧A \ T .
Case 1.2. b+ak−1 = a1+ak−2. Then b+2ak−1 = a1+ak−2+ak−1. We show

that 2ak−1 ∈ 3∧A. Suppose that 2ak−1 6∈ 3∧A, then except for ak−1 = 2ai for
some 1 ≤ i ≤ k − 2, we have

{2ak−1 − (aj + ak−1) : j = 1, . . . , k − 2} ∩ {a1, . . . , ak−2} = ∅.

Write

A1 = {2ak−1 − (aj + ak−1) : j = 1, . . . , k − 2}, A2 = {a1, . . . , ak−2}.

Then sets A1, A2 are pairwise disjoint except for at most one exception. Thus
|A1 ∪A2| ≥ 2k−5, which contradicts with the fact that A1, A2 ⊆ {1, . . . , ak−1−
1} ⊆ {1, . . . , 2k − 6}. Noting that ak−2 + ak−1 < 2ak−1 < a1 + ak−2 + ak−1,
we have 2ak−1 ∈ 3∧A \ T .

Case 1.3. b+ak−1 = a1 +ak−2 +ak−1. Then b = a1 +ak−2. We show that
ak−1 ∈ 3∧A. Suppose that ak−1 6∈ 3∧A, then except for ak−1 = 2ai for some
1 ≤ i ≤ k − 2, we have

{ak−1 − aj : j = 1, . . . , k − 2} ∩ {a1, . . . , ak−2} = ∅.

Write

B1 = {ak−1 − aj : j = 1, . . . , k − 2}, B2 = {a1, . . . , ak−2}.
Then sets B1, B2 are pairwise disjoint except for at most one exception. Thus
|B1 ∪B2| ≥ 2k−5, which contradicts with the fact that B1, B2 ⊆ {1, . . . , ak−1−
1} ⊆ {1, . . . , 2k − 6}. Noting that

a1 + ak−2 = b < ak−1 < a1 + ak−1,

then ak−1 ∈ 3∧A \ T .
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Case 1.4. b + ak−1 = ai + ak−2 + ak−1(i = 2, . . . , k − 3). Then b =
ai + ak−2(i = 2, . . . , k − 3). Thus b ∈ 3∧A. Moreover,

a1 + ak−2 < b < a1 + ak−1,

we have b ∈ 3∧A \ T .
Case 2. b + 2ak−1 ∈ 3∧A. If b + 2ak−1 /∈ T , then b + 2ak−1 ∈ 3∧A \ T .

Noting that b + 2ak−1 > ak−2 + ak−1, we consider the following two cases.
Case 2.1. b + 2ak−1 = a1 + ak−2 + ak−1. This is same as Case 1.2. We

have 2ak−1 ∈ 3∧A. Moreover,

ak−2 + ak−1 < 2ak−1 < a1 + ak−2 + ak−1,

we have 2ak−1 ∈ 3∧A \ T .
Case 2.2. b+ 2ak−1 = ai + ak−2 + ak−1(i = 2, . . . , k− 3). Then b+ ak−1 =

ai + ak−2(i = 2, . . . , k − 3). Thus b + ak−1 ∈ 3∧A. Moreover,

a1 + ak−2 < b + ak−1 < ak−3 + ak−1

and b + ak−1 6= aj + ak−1 for each aj ∈ A. We have b + ak−1 ∈ 3∧A \ T .
By Case 1, Case 2 and the fact that⋃

b∈B

{b}, {ak−1}, {2ak−1},
⋃
b∈B

{b + ak−1, b + 2ak−1}

are pairwise disjoint, we have |3∧A \ T | ≥ r. Hence, |3∧A| ≥ 3k − 8 + r =
2|A|+ l(A)− 7.

This completes the proof of Theorem 3.1. �

Remark 3.1. The assumption l(A) ≤ 2|A| − 5 can not be relaxed in Theorem
3.1. For example, let A = {0, 1, l(A)−2, l(A)−1, l(A)} with l(A) ≥ 2|A|−4 = 6.
Then

3∧A = {l(A)− 1, l(A), l(A) + 1, 2l(A)− 3, 2l(A)− 2, 2l(A)− 1, 2l(A), 3l(A)− 3}

and |3∧A| = 8 < 2|A|+ l(A)− 7.

Remark 3.2. The estimate for |3∧A| is sharp. For example, let A = {0, 2, 3, 4, 5,
6, 7}. We have 3∧A = {5, 6, . . . , 18}, and hence |3∧A| = 14 = 2|A|+ l(A)− 7.

4. Concluding remark

Remark 4.1. Let h ≥ 3 and A be a finite nonempty integer set with |A| ≥ 5.
If l(A) ≤ 2|A| − 2h + 1, then |h∧A| ≥ (h− 1)|A|+ l(A)− h2 + 2.

Theorem 3.1 implies the result holds for h = 3. Now, let h ≥ 4. Write
A = {a0, a1, . . . , ak−1} with 0 = a0 < a1 < · · · < ak−1 = l(A) and k = |A|.
Assume that the result holds for h − 1, that is if l(A) ≤ 2|A| − 2h + 3, then
|(h − 1)∧A| ≥ (h − 2)|A| + l(A) − (h − 1)2 + 2. Now we shall prove the result
holds for h. Write B = A \ {a1}. Since l(A) ≤ 2|A| − 2h + 1, we have

l(B) = l(A) ≤ 2|A| − 2h + 1 = 2|B| − 2h + 3.
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It follows from the induction hypothesis that

|(h−1)∧B+a1| ≥ (h−2)|B|+l(B)−(h−1)2+2 = (h−2)|A|+l(A)−(h−1)2−h+4.

Notice also that (h − 1)∧B + a1 ⊂ h∧A and max((h − 1)∧B + a1) = a1 +
ak−h+1 + · · ·+ ak−1. Consequently, the set (h− 1)∧B + a1 is disjoint from the
set

C = {ai + ak−h+1 + · · ·+ ak−1 : 2 ≤ i ≤ k − h} ⊂ h∧A.

Therefore

|h∧A| ≥ |(h− 1)∧B + a1|+ |C|
≥ (h− 2)|A|+ l(A)− (h− 1)2 − h + 4 + (|A| − h− 1)

= (h− 1)|A|+ l(A)− h2 + 2.

Hence, by induction the result holds for all h ≥ 3.

Acknowledgment. We are grateful to the anonymous referees for their valu-
able comments on this work.
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