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BIISOMETRIC OPERATORS AND BIORTHOGONAL

SEQUENCES

Carlos Kubrusly and Nhan Levan

Abstract. It is shown that a pair of Hilbert space operators V and

W such that V ∗W = I (called a biisometric pair) shares some common
properties with unilateral shifts when orthonormal bases are replaced

with biorthogonal sequences, and it is also shown how such a pair of

biisometric operators yields a pair of biorthogonal sequences which are
shifted by them. These are applied to a class of Laguerre operators on

L2[0,∞).

1. Introduction

Throughout this paper H and K stand for Hilbert spaces. We use the same
symbol 〈· ; ·〉 and ‖ · ‖ for the inner product and norm in both of them, respec-
tively. Let T : H → K be a bounded linear transformation (referred to as an
operator if K = H — i.e., an operator on H is a bounded linear transformation
of H into itself). Let I stand for the identity operator (either on H or on
K). Recall that T is an isometry if T ∗T = I, identity on H. Every isometry
is injective. A transformation T is unitary if it is a surjective isometry (i.e.,
an invertible isometry), which means T is an isometry and a coisometry (i.e.,
TT ∗ = I, identity on K; and T ∗T = I, identity on H). By a subspace of H
we mean a closed linear manifold of H. Let M− and M⊥ denote closure and
orthogonal complement, respectively, of a linear manifold M of H (both are
subspaces of H). The kernel and range of a bounded linear transformation T
will be denoted by N (T ) (a subspace of H) and R(T ) (a linear manifold of
K), respectively. The adjoint of T (which is a bounded linear transformation
of K into H) will be denoted by T ∗. Let spanA denote the linear span of an
arbitrary set A ⊆ H and let

∨
A denote the closure of spanA.

An operator S : H → H is a unilateral shift if there exists an infinite sequence
{Hk}∞k=0 of nonzero pairwise orthogonal subspaces of H (i.e., Hj ⊥ Hk) such
that H =

⊕∞
k=0Hk (i.e., {Hk}∞k=0 spans H) and S maps each Hk isometrically
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onto Hk+1 so that S|Hk : Hk → Hk+1 is a unitary transformation (i.e., a sur-
jective isometry). Thus dimHk+1 = dimHk for every k ≥ 0. Such a common
dimension is the multiplicity of S. The adjoint S∗ : H → H of S is referred
to as a backward unilateral shift . Every unilateral shift S is an isometry (i.e.,
S∗S = I) and so S is injective (but not surjective). Moreover, for each k ≥ 0

Hk = SkH0 with H0 = N (S∗),

where N (S∗) denotes the kernel of S∗. Therefore

SHk = Hk+1 and S∗Hk+1 = Hk.

In this paper we show that there exist pairs of Hilbert space operators V
and W that satisfy the above displayed shifting properties (although they may
not be unilateral shifts themselves, not even isometries), where orthogonality
is replaced by biorthogonality. The motivation behind such a program comes
from the following result from [2,4]. If S and R are unilateral shifts on a Hilbert
space H such that SS∗+RR∗= I, then H admits the dual-shift decomposition,
namely,

H =
⊕∞

k=1
SkN (S∗)⊕

⊕∞

k=1
RkN (R∗).

(The symbol ⊕ stands for orthogonal direct sum.) This will be approached
here in light of biorthogonal sequences (which are not necessarily individually
orthogonal sequences) and biisometric operators (which are not necessarily in-
dividually isometric operators). Next section discusses these notions.

2. Biorthogonal sequences

Biorthogonal sequences are germane to Banach spaces and were introduced
in the context of basis for separable Banach spaces [8, Definition 1.4.1], [6, Defi-
nition 1.f.1]. Thus let H be a separable Hilbert space. In a Hilbert space setting
(where dual pair boils down to inner product after the Riesz Representation
Theorem) the notion of biorthogonality reads as follows.

Definition 2.1. Two sequences {fn} and {gn} of vectors in H are said to
be biorthogonal (to each other) if 〈fm; gn〉 = δm,n, where δ stands for the
Kronecker delta function. If {fn} is such that there exists a sequence {gn}
for which {fn} and {gn} are biorthogonal, then it is said that {fn} admits a
biorthogonal sequence (and so does {gn}) and the pair {{fn}, {gn}} is referred
to as a biorthonormal system.

Let {fn} and {gn} be a pair of biorthogonal sequences. If they are such
that fn = gn for all n, then we get the definition of an orthonormal sequence,
although in general neither {fn} nor {gn} are orthogonal (much less orthonor-
mal) sequences.

A sequence {fn} that admits a biorthogonal sequence {gn} was called min-
imal in [6, Definition 1.f.1], where it was pointed out that (i) {fn} admits a
biorthogonal sequence if and only if fk 6∈

∨
{fk}n 6=k for every integer k (i.e., if
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and only if each vector fk from {fn} is not in the closure of span{fn}/{fk})
[6, p. 42] and (ii) every basic sequence is minimal [6, p. 43] (a sequence is basic
if it is a Schauder basis for its closed span). So every orthonormal sequence
admits a biorthonormal sequence.

A sequence {fn} spanning the whole space H is sometimes called total (or
complete, or fundamental). This means

∨
{fn} = H or, equivalently, f ⊥ fn for

every n implies f = 0 (i.e., {fn} is total if and only if the only vector orthogonal
to every fn is the origin). It was pointed out in [9] that (iii) if {fn} admits a
biorthogonal sequence {gn}, then {gn} is unique if and only if {fn} is total .

If {fn} admits a biorthogonal sequence {gn}, and if {fn} is total, then {gn}
is not necessarily total (i.e., the property “{fn} spans H” is not inherited by
{gn}— as in the example below). A total sequence {fn} that admits a (unique)
biorthogonal sequence {gn} was called exact in [9], where it was shown that (iv)
if the sequence {fn} = {ei αn} of vectors in the Hilbert space L2(−π, π) (so that
fn(t) = ei αnt for each n almost everywhere in (−π, π) — i.e., for almost every
t in (−π, π) with respect to Lebesgue measure) is exact (i.e., {fn} is total and
admits a (unique) biorthogonal sequence {gn}), then the biorthogonal sequence
{gn} is also exact .

Example 2.1. Let {en}n≥1 be any orthonormal basis for H (any orthonormal
sequences that spans H, thus total).

(a) The sequence {fn}n≥1 = {e1 + en+1}n≥1 is total (since if f ⊥ fn for all
n, then the absolute value of the Fourier coefficients of f with respect to the
orthonormal basis {en}n≥1 are constant, and so f = 0). Moreover, {fn}n≥1
admits a biorthogonal sequence {gn}n≥1 = {en+1}n≥1 which is unique and not
total.

(b) The sequences {fn}n≥1 = {e1 + e2 + en+2}n≥1, {gn}n≥1 = {en+2}n≥1,
and {hn}n≥1 = {e1 − e2 + en+2}n≥1 are pairwise biorthogonal to each other,
and therefore they are all not total.

Furthermore, every vector from {fn}n≥1 in (a) or in (b), and from {hn}n≥1
in (b), is not orthogonal to any other vector from the same sequence, and all
vectors in {fn}n≥1 and in {hn}n≥1 have squared norm 2 or 3 while {gn}n≥1 in
(a) or in (b) is an orthonormal sequence.

Indeed, there is no distinct pair of biorthonormal sequences as we show
below.

Theorem 2.1. Take a pair of biorthogonal sequences {fn} and {gn}. If
‖fn‖ = ‖gn‖−1, then {fn} and {gn} are proportional, which means for each
n there exists a nonnegative number αn for which fn = αngn. Moreover,
αn = ‖fn‖2.

Proof. Suppose {fn} and {gn} are biorthogonal sequences. Hence 〈fn, gn〉 = 1.
Take an arbitrary n. If ‖fn‖ = ‖gn‖−1, then

〈fn, gn〉 = ‖fn‖‖gn‖.
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But this is equivalent to saying that (see, e.g., [1, Problem 5.2])

fn = αngn

for some positive real number αn. Therefore {fn} and {gn} are proportional
(and so biorthogonal to each other). Moreover, since ‖fn‖ = ‖gn‖−1, it follows
that ‖fn‖ = αn‖gn‖ = αn‖fn‖−1 and so αn = ‖fn‖2. �

Corollary 2.1. There is no distinct pair of biorthonormal sequences. In other
words, if two sequences {fn} and {gn} are biorthogonal and if ‖fn‖ = ‖gn‖ = 1
for all n, then fn = gn for all n.

Proof. This is a particular case of Theorem 2.1 for ‖fn‖ = ‖gn‖ = 1 for all
n. �

3. Biisometric operators

Consider a pair of operators V and W on a Hilbert space H.

Definition 3.1. Two operators V andW are said to be biisometric if V ∗W = I,
and in this case {V,W} is referred to as a biisometric pair on H.

It is clear that V ∗W = I if and only if W ∗V = I. Thus {V,W} is a biiso-
metric pair if and only if

V ∗W = I = W ∗V.

Let V and W be a pair of biisometric operators. If they are such that W = V,
then we get the definition of an isometry, viz., V ∗V = I, although in general
neither V nor W are assumed to be isometries themselves.

Theorem 3.1. Let V and W be operators on H. Take arbitrary nonzero vectors
v and w in H. For each nonnegative integer n consider the vectors

φn = V nw and ψn = Wnv

in H. If {V,W} is a biisometric pair on H, then there exist

v ∈ N (V ∗) and w ∈ N (W ∗)

(equivalently, v ∈ R(V )⊥ and w ∈ R(W )⊥) such that the sequences {φn} and
{ψn} are biorthogonal. Moreover,

V φn = φn+1 and Wψn = ψn+1,

and also
V ∗ψn+1 = ψn and W ∗φn+1 = φn.

Proof. Take arbitrary nonzero vectors v ∈ N (V ∗) and w ∈ N (W ∗), arbitrary
nonnegative integers m,n, and set φn = V nw and ψn = Wnv. Suppose n < m.
Since V ∗W = I, a trivial induction leads to V ∗nWn = I which ensures

〈φm ;ψn〉 = 〈V mw ;Wnv〉 = 〈w ;V ∗(m−n)V ∗nWnv〉 = 〈w ;V ∗(m−n)v〉 = 0

for n < m because v ∈ N (V ∗) implies that v ∈ N (V ∗m−n). On the other hand,
suppose m < n. Since W ∗V = I and w ∈ N (W ∗), a similar argument ensures
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〈φm ;ψn〉 = 0 for m < n. Moreover, since W ∗V = I, it also follows that
N (V ∗)⊥ = R(V )− 6⊆ N (W ∗) and hence

N (V ∗) 6⊥ N (W ∗).

Thus there exist v ∈ N (V ∗) and w ∈ N (W ∗) such that 〈w ; v〉 6= 0, and so we
may take v ∈ N (V ∗) and w ∈ N (W ∗) for which 〈w ; v〉 = 1. Then

〈φn ;ψn〉 = 〈w ; v〉 = 1.

Therefore 〈φm ;ψn〉 = δmn. This means {φn} and {ψn} are biorthogonal se-
quences. Moreover, according to definition of φm and ψn we get

V φn = V m+1w = φn+1 and Wψn = Wm+1v = ψn+1,

and since V ∗W = I = W ∗V we also get

V ∗ψn+1 = V ∗Wm+1v = Wnv = φn and W ∗φn+1 = W ∗V n+1v = V nv = ψn

for every nonnegative integer n. �

Corollary 3.1. Let V and W be a biisometric pair on H, and consider the
biorthogonal sequences {φk} and {ψk} defined in Theorem 3.1 in terms of
nonzero vectors v ∈ R(V )⊥ and w ∈ R(W )⊥. If in addition these biorthog-
onal sequences span H, i.e., if they are total in H, then every f ∈ H can be
decomposed as

f =

∞∑
k=0

〈f ;ψk〉φk =

∞∑
k=0

〈f ;φk〉ψk,

and therefore

V f =

∞∑
k=0

〈f ;ψk〉φk+1 and Wf =

∞∑
k=0

〈f ;φk〉ψk+1,

V ∗f =

∞∑
k=0

〈f ;φk+1〉ψk and W ∗f =

∞∑
k=0

〈f ;ψk+1〉φk.

Proof. Take an arbitrary f ∈ H. If the biorthogonal sequences {φk} and {ψk}
span H (i.e., if

∨
{φk} =

∨
{ψk} = H), then

f =

∞∑
k=0

αkφk =

∞∑
k=0

βkψk

for some pair of sequences of scalars {αk} and {βk}. To verify the identities

αn = 〈f ;ψn〉 and βn = 〈f ;φn〉
for every n ≥ 1 observe (by the continuity of the inner product and recalling
that {φk} and {ψk} are biorthogonal) that

〈f ;ψn〉 =

∞∑
k=0

αk〈φk ;ψn〉 = αn and 〈f ;φn〉 =

∞∑
k=0

αk〈ψk ;φn〉 = βn
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for every n ≥ 1. To complete the proof recall from Theorem 3.1 that

V φn = φn+1, Wψn = ψn+1, V
∗ψn+1 = ψn, and W ∗φn+1 = φn

for each nonnegative integer n, and expand V f and W ∗f in terms of {φk}
and V ∗f and Wf in terms of {φk} (using again the continuity of the inner
product). �

4. Laguerre shifts

We now apply the results of Section 3 to a class of Laguerre operators.
Recall that the Laguerre functions consist of an orthonormal basis {en}∞n=0 for
the concrete Hilbert space L2[0,∞) (see, e.g., [1, Example 5.L(d)]) defined a.e.
for t ≥ 0 by

en(t) = e−
1
2 t Ln(t)

for each integer n ≥ 0, where Ln(t) are the Laguerre polynomials of degree
n ≥ 0. Consider the operator S : L2[0,∞)→ L2[0,∞) defined by Sf = g, where
(for almost all t ≥ 0 with respect to Lebesgue measure; i.e., almost everywhere
(a.e.) on [0,∞))

(Sf)(t) = g(t) with g(t) = f(t)−
∫ t

0

e−
1
2 (t−τ) f(τ) dτ,

which is an isometry having the shift property, viz. (with en(t) = e−
1
2 t Ln(t) ),

(Sen)(t) = e−
1
2 tLn+1(t) = en+1(t)

for every t ≥ 0 and each integer n ≥ 0. This is referred to as the Laguerre shift
(of multiplicity 1) generating the Laguerre functions. Let

D2α : L2[0,∞)→ L2[0,∞)

be the dilation-by-2α-operator defined by D2αf = g where for every t ≥ 0

(D2αf)(t) = g(t) with g(t) =
√

2α f(2αt)

for each α ≥ 1
2 . The α-Laguerre functions are then defined for each n ≥ 0

(again with en(t) = e−
1
2 t Ln(t) ) by

(D2α en)(t) =
√

2α en(2αt) =
√

2α e−αtLn(2αt)

for every t ≥ 0. Similarly, the α-Laguerre shift Sα — generating the α-Laguerre
functions — is defined by Sα = D2αS so that for every t ≥ 0

(Sαf)(t) = (D2αS)f(t) = g(t) with g(t) = f(t)− 2α

∫ t

0

e−α(t−τ)f(τ) dτ

and (with (D2α en)(t) =
√

2α e−αtLn(2αt) ) for each n ≥ 0

(Sα en)(t) = (D2αSen)(t) = (D2αen+1)(t) =
√

2α e−αt Ln+1(2αt).
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Now consider a class of 2-parameter Laguerre functions as follows. The (α+β)-

Laguerre functions are defined for every t ≥ 0 by (recall: en(t) = e−
1
2 t Ln(t) )

(Dα+β en)(t) =
√
α+ β e−

α+β
2 tLn

(
(α+ β)t

)
for each n ≥ 0 where α, β ≥ 1

2 . (Compare with [3, Section 5].) From now on
we proceed formally.

Lemma 4.1. The sequences {φn} and {ψn} given by

φn(t) =
√
α+ β e−αtLn

(
(α+ β)t

)
and ψn(t) =

√
α+ β e−βt Ln

(
(α+ β)t

)
for each n ≥ 0 are biorthogonal and span L2[0,∞).

Proof. For each k, ` ≥ 0

〈φk ;ψ`〉 =

∫ ∞
0

√
α+ β e−αtLk

(
(α+ β)t

)√
α+ β e−βtL`

(
(α+ β)t

)
dt

=

∫ ∞
0

√
α+ β e−

α+β
2 tLk

(
(α+ β)t

)√
α+ β e−

α+β
2 tL`

(
(α+ β)t

)
dt

= δk`

since the above-defined (α+ β)-Laguerre functions, namely, Dα+β

(
e−

1
2 tLn(t)

)
=
√
α+ β e−

α+β
2 tLn

(
(α+ β)t

)
, are orthonormal. It remains to show that {φn}

and {ψn} span L2[0,∞). Suppose there is a nonzero h ∈ L2[0,∞) such that∫ ∞
0

e−αtLn
(
(α+ β)t

)
h(t) dt = 0

for every t ≥ 0 and each n ≥ 0, which can be rewritten as∫ ∞
0

e−
α+β

2 tLn
(
(α+ β)t

)(
e−

α−β
2 th(t)

)
dt = 0.

Therefore, since the (α + β)-Laguerre functions
√
α+ β e−

α+β
2 tLn

(
(α+ β)t

)
also span L2[0,∞),

e−
α−β

2 th(t) = 0 for every t ≥ 0 =⇒ h(t) = 0 for every t ≥ 0,

which ensures that the sequence {φn} spans L2[0,∞). Interchanging α and β,
{ψn} also spans L2[0,∞). �

Lemma 4.2. The Laplace transforms of each φn and ψn are given by

Ls[φn](s) =
[
s−β
s+α

]n √
α+β
s+α and Ls[ψn](s) =

[
s−α
s+β

]n √
α+β
s+β .

Proof. The functions φn and ψn were defined in Lemma 4.1 as follows.

φn(t) =
√
α+ β e−αtLn

(
(α+ β)t

)
and ψn(t) =

√
α+ β e−βt Ln

(
(α+ β)t

)
.

Recall that the Laplace transform of the Laguerre polynomial Ln(t) is

Ls[Ln](s) = (s−1)n
sn+1 .
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Thus (formally)

Ls
[√

α+ β e−αtLn([α+ β]t
]

=
√
α+ β (s+α−[α+β])n

(s+α)n+1

=
√
α+ β (s−β)n

(s+α)n+1 =
[
s−β
s+α

]n √
α+β
s+α ,

and hence

Ls
[√

α+ β e−βtLn([α+ β]t)
]

=
[
s−α
s+β

]n √
α+β
s+β

by interchanging α and β. �

The shift operator S corresponds to the operator multiplication by the func-
tion H(·) in the Hardy space H2 which is given by

H(s) =
s− 1

2

s+ 1
2

for Re(s) > − 1
2 . The Laplace transforms of φn and ψn in Lemma 4.2 imply

the existence of functions Hαβ and Hβα in H2 given by

Hαβ(s) = s−α
s+β and Hβα(s) = s−β

s+α .

Consequently we consider the (αβ)-Laguerre operator Sαβ on L2[0,∞) defined
by Sαβf = g where, for every t ≥ 0

(Sαβf)(t) = g(t) with g(t) = f(t)− (α+ β)

∫ t

0

e−β(t−τ)f(τ) dτ,

generating for each n ≥ 0 the function ψn given by

ψm(t) =
√
α+ β e−βtLn

(
[α+ β]t

)
.

Interchanging α and β we have the Sβα-Laguerre operator Sβα on L2[0,∞)
defined by Sβαf = g where, for every t ≥ 0

(Sβαf)(t) = g(t) with g(t) = f(t)− (α+ β)

∫ t

0

e−α(t−τ)f(τ) dτ,

generating the function φm given by

φm =
√
α+ β e−αtLn

(
[α+ β]t

)
.

Observe that Sαβ is associated with the α-Laguerre shift Sα while Sβα is asso-
ciated with the β-Laguerre shift Sβ .

Theorem 4.1. The (αβ) and (βα)-Laguerre operators Sαβ and Sβα consist
of a biisometric pair on L2[0,∞) having the following properties.

N (S∗αβ) = span{e−α(·)} = N (S∗α),

N (S∗βα) = span{e−β(·)} = N (S∗β),

S∗αβSβα = I = S∗βαSαβ ,

SαβSβα = SαSβ = SβαSαβ ,

and so SαβSβα is a shift of multiplicity 2.
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Proof. For t ≥ 0

S∗αβf = g with g(t) = f(t)− (α+ β)

∫ ∞
t

e−β(σ−t)f(τ) dτ.

Therefore f ∈ N (S∗αβ) if and only if S∗αβf = 0, which implies, for every t ≥ 0,

f(t) = (α+ β)

∫ ∞
t

e−β(σ−t)f(τ) dτ.

Differentiating both sides we get, for t ≥ 0,

f(t) = βf(t)− (α+ β)f(t) = −αf(t).

Solving for f we get
f(t) = Ke−αt

for t ≥ 0 and some constant K. The same argument leads to

S∗αe
−αt = 0

for every t ≥ 0. This proves the first property. Interchanging α and β we get the
second one. The next two properties are derived by simple calculations. Finally,
since Sαβ Sβα is the convolution of two commutable shifts of multiplicities 1,
viz., SαSβ , it is therefore a shift of multiplicity 2. �

The final result follows from Corollary 3.1, Lemmas 4.1, 4.2, and Theorem
4.1.

Corollary 4.1. Tor each n ≥ 0 consider the functions φn and ψm in L2[0,∞)
as follows.

φn(t) =
√
α+ β e−βtLn

(
(α+ β)t

)
= [Sαβ ]n

√
α+ β e−βt,

ψm(t) =
√
α+ β e−αtLm

(
(α+ β)t

)
= [Sβα]n

√
α+ β e−αt.

The sequences {φn} and {ψn} are biorthogonal and both span L2[0,∞). More-
over, the biisometric operators Sαβ and Sβα shift the biorthogonal total se-
quences {φn} and {ψn}. That is, for each n ≥ 0

Sαβφn = φn+1,

and for every f ∈ L2[0,∞)

f =

∞∑
k=0

〈f ;ψk〉φk and so Sαβf =

∞∑
k=0

〈f ;ψk〉φk+1.

Similarly, for each n ≥ 0
Sβαψk = ψk+1,

and for every f ∈ L2[0,∞),

f =

∞∑
k=0

〈f ;φk〉ψk and so Sβαf =

∞∑
k=0

〈f ;φk〉ψk+1.

Proof. Apply Corollary 3.1, Lemmas 4.1, 4.2, and Theorem 4.1. �
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Remark 4.1. (a) The Gram–Schmidt orthonormalization procedure can be ex-
tended to biorthonormalization in Hilbert space. Indeed, take a pair of se-
quences {fn} and {gn}, and construct the sequences {φn} and {ψn} so that
〈φm ;ψn〉 = δm,n as follows. To begin with set

φ0 = f0

〈f0 ;g0〉
1
2

and ψ0 = g0

〈f0 ;g0〉
1
2
,

so that 〈φ0 ;ψ0〉 = 1. Next set

φ1 = p1

〈p1 ;q1〉
1
2

and ψ1 :=
q1

〈p1 ; q1〉
1
2

,

where
p1 = f1 − 〈f1 ;ψ0〉φ0 and q1 = g1 − 〈g1 ;φ0〉ψ0.

It is plain that 〈φ1 ;ψ1〉 = 1, p1 ⊥ ψ0, and q1 ⊥ φ0. Then

r1φ1 = p1 = f1 − 〈f1 ;ψ0〉φ0 where r1 = 〈p1, q1〉
1
2 .

Thus φ1 ⊥ ψ0. Similarly,

r1ψ1 = q1 = g1 − 〈g1 ;φ0〉ψ0,

and so ψ1 ⊥ φ0. In general we have

rnφn = pn = fn −
n−1∑
k=0

〈fn ;ψk〉φk ⊥ ψ0, . . . , ψn−1 where rn = 〈pn ; qn〉
1
2 .

Similarly,

rnψn = qn = gn −
n−1∑
k=0

〈gn ;φk〉ψk ⊥ φ0, . . . , φn−1.

If fn ⊥ h, then φn ⊥ h. Therefore, if {fn} is total (i.e., complete), then so is
{φn}. Similarly, if {gn} is total (i.e., complete), then so is {ψn}.

(b) It is also worth noticing on the following points.

(i) If fn = gn, then the Gram–Schmidt biorthonormalization becomes the
usual Gram-Schmidt orthonormalization.

(ii) If fn(t) = e−αt[(α+ β)t]n and gn(t) = e−βt[(α+ β)t]n, then we get
φn(t) = eαtLn(α+ β)t and ψn(t) = eβtLn(α+ β)t. Moreover {fn} and
{gn} are total (i.e., complete), and φn and ψn admit the biisometric
description as well. Also {φn} and {ψn} are in this case independently
total (i.e., complete).

5. Conclusion and remarks

We have seen in Section 4 that the α-Laguerre shift Sα satisfied for each
n ≥ 0 the following properly.

Sα[
√

2α e−αt Ln(2αt)] =
√

2α e−αtLn+1(2αt).

Moreover,
[S∗α] e−αt = 0.
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The same type of results can be obtained for Sαβ . Indeed, in the space H2,

[Hαβ ]nLs
[
e−αt

]
=
[
s−α
s+β

]n
1

s+α ,

and hence

[Hαβ ]n+1 1
s+α =

[
s−α
s+α

] [
s−α
s+β

]n
1

s+β = Hα[Hαβ ]n 1
s+β

for each n ≥ 0, where Hα = s−α
s+α . Therefore for each n ≥ 0

[Sαβ ]n e−αt = Sα [e−βtLn([α+ β]t)].

Interchanging α and β we get

[Sβα]n e−βt = Sβ
[
e−αtLn

(
(α+ β)t

)]
.

These functions, however, are neither orthogonal nor biorthogonal. The α-
Laguerre functions and α-Laguerre shift Sα have been widely applied in sys-
tems analysis and identification, see for instance [7] and the references therein.
Applications of biorthogonal Laguerre functions and biisometric Laguerre shifts
will be reported elsewhere.

Finally, the biisometric operators Sαβ and Sβα discussed above can be re-
garded as “Laguerre-like” shifts of multiplicity 1. A class of Laguerre shifts and
Laguerre shift semigroups of finite multiplicities have been developed in [5]. We
expect that one can also construct “Laguerre-like” shifts of finite multiplicities.
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