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ON CLIQUES AND LAGRANGIANS OF HYPERGRAPHS
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Abstract. Given a graph G, the Motzkin and Straus formulation of the

maximum clique problem is the quadratic program (QP) formed from

the adjacent matrix of the graph G over the standard simplex. It is well-
known that the global optimum value of this QP (called Lagrangian)

corresponds to the clique number of a graph. It is useful in practice if
similar results hold for hypergraphs. In this paper, we attempt to explore

the relationship between the Lagrangian of a hypergraph and the order

of its maximum cliques when the number of edges is in a certain range.
Specifically, we obtain upper bounds for the Lagrangian of a hypergraph

when the number of edges is in a certain range. These results further

support a conjecture introduced by Y. Peng and C. Zhao (2012) and
extend a result of J. Talbot (2002). We also establish an upper bound of

the clique number in terms of Lagrangians for hypergraphs.

1. Introduction

Given a graphG, the Motzkin and Straus formulation of the maximum clique
problem is the quadratic program (QP) formed from the adjacent matrix of the
graph G over the standard simplex. It is well-known that the global optimum
value of this QP (called Lagrangian) has applications in both combinatorics and
optimization. Motzkin and Straus’ result basically says that the Lagrangian of
a graph corresponds to the clique number of this graph (the precise statement
is given in Theorem 2.1). This result provides a solution to the optimization
problem for a class of homogeneous quadratic multilinear functions over the
standard simplex of an Euclidean plane. The Motzkin-Straus result and its
extension were successfully employed in maximum clique problem (see [1–3,7]).
It has been also generalized to vertex-weighted graphs [7] and edge-weighted
graphs with applications to pattern recognition in image analysis (see [1–3, 7,
12–14,20]).

For hypergraphs, the Lagrangian and its variants have been a useful tool in
hypergraph extremal problems, hypergraph clustering, and social networks.
For example, Frankl-Füredi [5] used Lagrangian of hypergraphs in finding
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Turán densities of hypergraphs. Frankl and Rödl [6] used it in disproving
Erdős long standing jumping constant conjecture. The variants of Lagrangian
of hypergraphs are used to detect communities in social networks in [4,27] and
hypergraph clustering [9, 19]. In most applications, we need an upper bound
for the Lagrangian of a hypergraph. The obvious generalization of Motzkin
and Straus’ result to hypergraphs is false. In fact, there are many examples
of hypergraphs that do not achieve their Lagrangians on any proper subhyper-
graph. An attempt to generalize the Motzkin-Straus theorem to hypergraphs
is due to Sós and Straus [22]. In [17] and [18] Rota Buló and Pelillo generalized
the Motzkin and Straus’ result to r-graphs in some way using a continuous
characterization of maximal cliques other than Lagrangian of hypergraphs.

In this paper, we attempt to explore the relationship between the Lagrangian
of a hypergraph and the order of its maximum cliques when the number of
edges is in a certain range though the obvious generalization of Motzkin and
Straus’ result to hypergraphs is false. Specifically, we obtain upper bounds for
Lagrangian of a hypergraph when the number of edges is in a certain range.
These results further provide substantial evidence for two conjectures in [16]
and extend some known results in the literature ([16] and [23]). We also es-
tablish an upper bound for the clique number in terms of Lagrangians for
hypergraphs. The presented results establish connections between a continu-
ous optimization problem and the maximum clique problem of hypergraphs.
Since practical problems such as social networks [4, 27] and clustering [9, 19]
are related to the maximum clique problems, this type of results opens a door
to such practical applications.

2. Definitions and main result

An r-uniform hypergraph (r-graph) consists of a set of vertices V (G) and a
set E(G) of r-subsets of V, called edges. When V (G) is not defined explicitly,
it is assumed that V (G) = [n] = {1, 2, . . . , n}. An edge {a1, a2, . . . , ar} in G

will be simply denoted by a1a2 · · · ar. Let K
(r)
t denote the complete r-graph

on t vertices, that is the r-graph on t vertices containing all possible edges. A
complete r-graph on t vertices is also called a clique with order t. A clique is
said to be maximum if it has maximum cardinality. The clique number of an
r-graph G is defined as the cardinality of the maximum clique of G. Let [t](r)

represent the complete r-graph on the vertex set [t].

Definition 1. For an r-graph G = ([n], E(G)) and a vector ~x = (x1, . . . , xn) ∈
Rn, define polynomial form PG(~x) : Rn → R1 as

PG(~x) :=
∑

i1i2···ir∈E(G)

xi1xi2 · · ·xir .

Let S := {~x = (x1, x2, . . . , xn) :
∑n

i=1 xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}. The
Lagrangian of G, denoted by λ(G), is the maximum of the above homogeneous
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function over the standard simplex S.

λ(G) := max{PG(~x) : ~x ∈ S}.

The value xi is called the weight of the vertex i. A vector ~x = (x1, x2, . . . , xn)
∈ Rn is called a feasible weighting for G if ~x ∈ S. A vector ~y ∈ S is called an
optimal weighting for G if λ(G, ~y) = λ(G). The following fact is easily implied
by the definition of the Lagrangian.

Fact 1. Let G1, G2 be r-uniform graphs and G1 ⊆ G2. Then λ(G1) ≤ λ(G2).

The maximum clique problem is a classical problem in combinatorial opti-
mization which has important applications in various domains. In [10], Motzkin
and Straus established a remarkable connection between the clique number and
the Lagrangian of a graph.

Theorem 2.1 ([10, Theorem 1]). If G is a 2-graph in which a largest clique

has order t, then λ(G) = λ
(
K

(2)
t

)
= 1

2

(
1− 1

t

)
.

Motzkin-Straus theorem has been proved to be a useful tool in various do-
mains such as maximum clique problem (see [1–3,7]). It has been also general-
ized to vertex-weighted graphs [7] and edge-weighted graphs with applications
to clustering and pattern recognition in image analysis (see [1–3,7,12–14,20]).
Lagrangians of hypergraphs have been proved to be a useful tool in hypergraph
extremal problems, clustering and social networks. For example, it has been
used in finding Turán densities of hypergraphs in [5,11,21]. However, the obvi-
ous generalization of Motzkin and Straus’ result to hypergraphs is false. In fact,
there are many examples of hypergraphs that do not achieve their Lagrangians
on any proper subhypergraph. An attempt to generalize the Motzkin-Straus
theorem to hypergraphs is due to Sós and Straus [22]. Recently, in [17] and [18]
Rota Buló and Pelillo generalized the Motzkin and Straus’ result to r-graphs
in some way using a continuous characterization of maximal cliques other than
Lagrangians of hypergraphs. We attempt to explore the connection between
the Lagrangian of a hypergraph and the order of its maximum cliques for hy-
pergraphs when the number of edges is in a certain range though the obvious
generalization of Motzkin and Straus’ result to hypergraphs is false. In [16],
the following two conjectures are proposed.

Conjecture 1 ([16, Conjecture 1.3]). Let m and t be positive integers satisfying(
t−1
r

)
≤ m ≤

(
t−1
r

)
+
(
t−2
r−1
)
. Let G be an r-graph with m edges and contain a

clique of order t− 1. Then λ(G) = λ([t− 1](r)).

Conjecture 2 ([16, Conjecture 1.4]). Let m and t be positive integers satisfying(
t−1
r

)
≤ m ≤

(
t−1
r

)
+
(
t−2
r−1
)
. Let G be an r-graph with m edges and contain no

clique of order t− 1. Then λ(G) < λ([t− 1](r)).

In [16], Peng and Zhao proved that Conjecture 1 holds for r = 3.
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Theorem 2.2 ([16, Theorem 1.8]). Let m and t be positive integers satisfying(
t−1
3

)
≤ m ≤

(
t−1
3

)
+
(
t−2
2

)
. Let G be a 3-graph with m edges and G contain a

clique of order t− 1. Then λ(G) = λ([t− 1](3)).

Lagrangians of hypergraphs and its variants have been proved to be a useful
tool in various domains such as hypergraph extremal problems [5, 6, 8, 11, 21],
hypergraph clustering [9, 19] and social networks [4, 27]. In most applications,
an upper bound is needed. Frankl and Füredi [5] asked the following question.
Given r ≥ 3 and m ∈ N how large can the Lagrangian of an r-graph with m
edges be?

For distinct A,B ∈ N(r) we say that A is less than B in the colex ordering
if max(A4B) ∈ B, where A4B = (A \ B) ∪ (B \ A). For example, the first(
t
r

)
r-tuples in the colex ordering of N(r) are the edges of [t](r). The following

conjecture of Frankl and Füredi (if it is true) proposes a solution to the question
mentioned above.

Conjecture 3 ([5, Conjecture 4.1]). The r-graph with m edges formed by taking
the first m sets in the colex ordering of N(r) has the largest Lagrangian of all
r-graphs with m edges. In particular, the r-graph with

(
t
r

)
edges and the largest

Lagrangian is [t](r).

This conjecture is true when r = 2 by Theorem 2.1. Talbot [23] has proved
that for positive integers m, t and r satisfying

(
t−1
r

)
≤ m ≤

(
t−1
r

)
+
(
t−2
r−1
)
, then

λ(Cr,m) = λ([t− 1](r)). So if Conjectures 1 and 2 are true, then Conjecture 3
is true for this range of m.

There are also some partial results for Conjecture 3 for r = 3. In [23], Talbot
proved the following:

Theorem 2.3 ([23, Theorem 2.1]). Let t, m and r be positive integers satisfying(
t−1
3

)
≤ m ≤

(
t−1
3

)
+
(
t−2
2

)
− (t − 1). Let G be a 3-graph with m edges. Then

λ(G) ≤ λ([t− 1](3)).

In [25], Tang et al. proved the following:

Theorem 2.4 ([25, Theorem 4]). Let t, m and r be positive integers satisfying(
t−1
3

)
≤ m ≤

(
t−1
3

)
+
(
t−2
2

)
− t−2

2 . Let G be a 3-graph with m edges and without

containing a clique of order t− 1. Then λ(G) < λ([t− 1](3)).

However for general r, this conjecture is every challenging in extremal com-
binatorics and very few results on this conjecture are known. The following
asymptotic result proved by Talbot is the evidence for Conjecture 3 for r-graphs
on exactly t vertices.

Theorem 2.5 ([23, Theorem 3.1]). For any r ≥ 4 there exist constants γr and
κ0(r) such that if m satisfies(

t− 1

r

)
≤ m ≤

(
t− 1

r

)
+

(
t− 2

r − 1

)
− γr(t− 1)r−2,
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with t ≥ κ0(r), let G be an r-graph on t vertices with m edges, then λ(G) ≤
λ([t− 1](r)).

Very recently, Tyomkyn obtained further asymptotic result for Conjecture
3 for r-graphs in [26]. In [15], the following result is obtained for r-graphs.

Theorem 2.6 ([15, Theorem 1.10]). Let t, m and r be positive integers sat-

isfying
(
t−1
r

)
≤ m ≤

(
t−1
r

)
+
(
t−2
r−1
)
− (2r−3 − 1)

((
t−2
r−2
)
− 1
)

. Let G be an

r-graph with t vertices and m edges and contain a clique of order t− 1. Then
λ(G) = λ

(
[t− 1](r)

)
.

The main result in this paper is Theorem 2.7 which is an accompany result
of Theorem 2.6.

Theorem 2.7. Let m, t, and r ≥ 4 be integers satisfying(
t− 1

r

)
≤ m ≤

(
t− 1

r

)
+

(
t− 2

r − 1

)
− [(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r − 7)− 1]

((
t− 2

r − 2

)
− 1

)
.

Let G be an r-graph on t vertices with m edges and without containing a clique
of order t− 1. Then λ(G) < λ

(
[t− 1](r)

)
.

Theorem 2.7 supports Conjecture 2. Combing Theorems 2.6 and 2.7, we
have the following result immediately.

Theorem 2.8. Let m, t, and r ≥ 4 be integers satisfying(
t− 1

r

)
≤ m ≤

(
t− 1

r

)
+

(
t− 2

r − 1

)
− [(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r − 7)− 1]

((
t− 2

r − 2

)
− 1

)
.

Let G be an r-graph with t vertices and m edges. Then λ(G) ≤ λ
(
[t− 1](r)

)
.

Theorem 2.8 provides further evidence for Conjecture 3. The contribution
of Theorem 2.8 is that the method developed in the proof of Theorem 2.7
is simpler and different from that in Theorem 2.5 in some ways. The upper
bound in Theorem 2.8 for the number of edges m is more explicit and an
improvement comparing to the bound in Theorem 2.5. We remark that, in
the proof of Theorem 2.5, we see that γr = 22

r

and t ≥ κ0(r), where κ0(r)
is a sufficiently large integer such that

(
t−2
r−1
)
> γr(t − 1)r−2 = 22

r

(t − 1)r−2

for t ≥ κ0(r). In Theorem 2.8, we improve the upper bound for m from(
t−1
r

)
+
(
t−2
r−1
)
− γr(t− 1)r−2 to(

t− 1

r

)
+

(
t− 2

r − 1

)
−
[
(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r − 7)− 1

]((t− 2

r − 2

)
− 1

)
.

Note that
(
t−1
r

)
≤ m ≤

(
t−1
r

)
+
(
t−2
r−1
)
− [(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r −

7) − 1]
((

t−2
r−2
)
− 1
)

implies t should satisfy
(
t−2
r−1
)
> [(2r − 6) × 2r−1 + 2r−3 +

(r − 4)(2r − 7) − 1]
((

t−2
r−2
)
− 1
)

. We also improve the condition on t from(
t−2
r−1
)
> 22

r

(t− 1)r−2 to this value.
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At this moment, we cannot get rid of the restriction on the vertex number
in general. As an attempt, we obtain the following weaker result without the
restriction on the vertex number.

Theorem 2.9. Let m, t, and r ≥ 4 be integers satisfying(
t− 1

r

)
≤ m ≤

(
t− 1

r

)
+

(r − 1)r−1

(r − 1)!

(t− 2) · · · (t− r)
(t− 1)r−1

.

Let G be an r-graph with m edges containing a clique of order t − 1. Then
λ(G) = λ

(
[t− 1](r)

)
.

The proof of Theorem 2.7 will be given in Section 4. The proofs of Theorem
2.9 will be given in Section 5. Further remarks and conclusions are given in
Section 6. Next, let us give some useful results.

3. Useful results

For an r-graph G = (V,E), denote the (r−1)-neighborhood of a vertex i ∈ V
by Ei := {A ∈ V (r−1) : A∪{i} ∈ E}. Similarly, denote the (r−2)-neighborhood
of a pair of vertices i, j ∈ V by Eij := {B ∈ V (r−2) : B ∪ {i, j} ∈ E}. Denote

the complement of Ei by Ec
i = {A ∈ V (r−1) : A ∪ {i} ∈ V (r)\E}. Also, denote

the complement of Eij by Ec
ij := {B ∈ V (r−2) : B ∪ {i, j} ∈ V (r)\E} and

Ei\j := Ei ∩ Ec
j .

We will impose one additional condition on any optimal weighting ~x =
(x1, x2, . . . , xn) for an r-graph G:

|{i : xi > 0}| is minimal, i.e., if ~y is a feasible weighting for G satisfying

|{i : yi > 0}| < |{i : xi > 0}|, then λ(G, ~y) < λ(G).(1)

When the theory of Lagrange multipliers is used to find the optimum of
λ(G,~x), subject to

∑n
i=1 xi = 1, notice that λ(Ei, ~x) corresponds to the par-

tial derivative of λ(G,~x) with respect to xi. The following lemma gives some
necessary conditions of an optimal weighting for G.

Lemma 3.1 ([6, Theorem 2.1]). Let G = (V,E) be an r-graph on the vertex set
[n] and ~x = (x1, x2, . . . , xn) be an optimal weighting for G with k (≤ n) non-zero
weights x1, x2, . . ., xk satisfying condition (1). Then for every {i, j} ∈ [k](2),
(a) λ(Ei, ~x) = λ(Ej , ~x) = rλ(G), (b) there is an edge in E containing both i
and j.

Definition 2. An r-graph G = (V,E) on the vertex set [n] is left-compressed if
j1j2 · · · jr ∈ E implies i1i2 · · · ir ∈ E whenever ik ≤ jk, 1 ≤ k ≤ r. Equivalently,
an r-graph G = (V,E) on the vertex set [n] is left-compressed if Ej\i = ∅ for
any 1 ≤ i < j ≤ n.

Remark 3.2. (a) In Lemma 3.1, part (a) implies that xjλ(Eij , ~x)+λ(Ei\j , ~x) =
xiλ(Eij , ~x) + λ(Ej\i, ~x). In particular, if G is left-compressed, then

(xi − xj)λ(Eij , ~x) = λ(Ei\j , ~x)
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for any i, j satisfying 1 ≤ i < j ≤ k since Ej\i = ∅.
(b) If G is left-compressed, then for any i, j satisfying 1 ≤ i < j ≤ k,

(2) xi − xj =
λ(Ei\j , ~x)

λ(Eij , ~x)

holds. If G is left-compressed and Ei\j = ∅ for i, j satisfying 1 ≤ i < j ≤ k,
then xi = xj .

(c) By (2), ifG is left-compressed, then an optimal weighting ~x = (x1, x2, . . . ,
xn) for G must satisfy x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Denote λr(m,t) = max{λ(G) : G is an r-graph with t vertices and m edges}.
The following lemma is proved in [23].

Lemma 3.3 ([23, Lemma 2.3]). There exists a left-compressed r-graph G with
t vertices and m edges such that λ(G) = λr(m,t).

Remark 3.4. Since the only left-compressed r-graph with t vertices and m =
(
t
r

)
edges is [t](r). Hence by Lemma 3.3 and Fact 1, we have λr(m,t) ≤ λ

(
[t](r)

)
.

4. Proofs of Theorem 2.7

Denote λr−(m,t−1,t) = max{λ(G) : G is an r-graph with t vertices and m edges

not containing a clique of order t − 1}. The following lemma implies that we
only need to consider left-compressed r-graphs G when we prove Theorem 2.7.

Lemma 4.1. Let m, t and r be integers satisfying(
t− 1

r

)
≤ m

≤
(
t− 1

r

)
+

(
t− 2

r − 1

)
−
[
(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r − 7)− 1

]((t− 2

r − 2

)
− 1

)
.

There exists a left-compressed r-graph G on vertex set [t] with m edges without
containing [t− 1](r) such that λ(G) = λr−(m,t−1,t).

The proof of Lemma 4.1 is similar to Lemma 4.1 in [24]. However Lemma
4.1 in [24] cannot be used directly here. For completeness, we give the proof
here. In the proof of Lemma 4.1, we need to define some partial order relation.
An r-tuple i1i2 · · · ir is called a descendant of an r-tuple j1j2 · · · jr if is ≤ js
for each 1 ≤ s ≤ r, and i1 + i2 + · · · + ir < j1 + j2 + · · · + jr. In this case,
the r-tuple j1j2 · · · jr is called an ancestor of i1i2 · · · ir. The r-tuple i1i2 · · · ir is
called a direct descendant of j1j2 · · · jr if i1i2 · · · ir is a descendant of j1j2 · · · jr
and j1 + j2 + · · ·+ jr = i1 + i2 + · · ·+ ir + 1. We say that i1i2 · · · ir has lower
hierarchy than j1j2 · · · jr if i1i2 · · · ir is a descendant of j1j2 · · · jr. This is a
partial order on the set of all r-tuples.
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Remark 4.2. In view of Fig. 1, an r-graph G is left-compressed if and only if
all descendants of an edge of G are edges of G. Equivalently, if an r-tuple is
not an edge of G, then none of its ancestors will be an edge of G.

  (t-r)(t-r+2)(t-r+3) (t-1)t

(t-r-1)(t-r+2)(t-r+3) (t-1)t (t-r)(t-r+1)(t-r+3) (t-1)t

(t-r-2)(t-r+2)(t-r+3) (t-1)t (t-r-1)(t-r+1)(t-r+3) (t-1)t (t-r)(t-r+1)(t-r+2)(t-r+4) (t-1)t

(t-r+1)(t-r+2)(t-r+3) (t-1)t

Figure 1. Hessian Diagram on [t](r)

Proof of Lemma 4.1. Let G be an r-graph with t vertices and m edges without
containing a clique of order t − 1 such that λ(G) = λr−(m,t−1,t). We call G an

extremal r-graph for m, t − 1 and t. Let ~x = (x1, x2, . . . , xt) be an optimal
weighting of G. We can assume that xi ≥ xj when i < j since otherwise we can
just relabel the vertices of G and obtain another extremal r-graph for m, t− 1
and t with an optimal weighting ~x = (x1, x2, . . . , xt) satisfying xi ≥ xj when
i < j. Next we obtain a new r-graph H from G by performing the following:

(1) If (t − r) · · · (t − 1) ∈ E(G), then there is at least one r-tuple in [t −
1](r) \ E(G), we replacing (t− r) · · · (t− 1) by this r-tuple;

(2) If an edge in G has a descendant other than (t − r) · · · (t − 1) that
is not in E(G), then replace this edge by a descendant other than
(t − r) · · · (t − 1) with the lowest hierarchy. Repeat this until there is
no such an edge.

Then H satisfies the following properties:

(1) The number of edges in H is the same as the number of edges in G.
(2) λ(G) = λ(G,~x) ≤ λ(H,~x) ≤ λ(H).
(3) (t− r) · · · (t− 1) /∈ E(H).
(4) For any edge in E(H), all its descendants other than (t− r) · · · (t− 1)

will be in E(H).

If H is not left-compressed, then there is an ancestor of (t − r) · · · (t − 1),
says e, such that e ∈ E(H). Hence (t − r) · · · (t − 2)t and all the descendants



ON CLIQUES AND LAGRANGIANS OF HYPERGRAPHS 577

of (t− r) · · · (t− 2)t other than (t− r) · · · (t− 1) will be in E(H). Then

m ≥
(
t− 1

r

)
− 1 +

(
t− 2

r − 1

)
>

(
t− 1

r

)
+

(
t− 2

r − 1

)
−
[
(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r − 7)− 1

]((t− 2

r − 2

)
− 1

)
which is a contradiction. H does not contain [t−1](r) since H does not contain
(t − r) · · · (t − 1). Clearly H is on vertex set [t]. So we complete the proof of
Lemma 4.1. �

In the rest of this section, we assume that r ≥ 4 be an integer. In the
following three lemmas, Lemma 4.3 implies the maximum weight of G should
distribute ‘uniform’ on the t vertices if λ(G) ≥ λ

(
[t− 1](r)

)
, and Lemma 4.5

implies G contains most of the first
(
t−2r+6

r

)
edges in colex ordering of N (r) if

λ(G) ≥ λ
(
[t− 1](r)

)
, while Lemma 4.4 implies G also contains most of the first(

t−2r+6
r−1

)
edges containing t − 1. Since G is left-compressed, G also contains

most of the first
(
t−2r+6
r−1

)
edges containing vertex i, where t−2r+7 ≤ i ≤ t−1.

So G contains most edges of [t− 1](r).

Lemma 4.3. (a) Let G be an r-graph on vertex set [t]. Let ~x = (x1, x2, . . . , xt)
be an optimal weighting for G satisfying x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. Then
x1 < xt−2r+3 + xt−2r+4 or

λ(G) ≤ 1

r!

(t− r)r−1
t−2∏

i=t−r+2

i

(t− r + 1)r−2(t− 1)r−2
<

1

r!

t−1∏
i=t−r

i

(t− 1)r
= λ

(
[t− 1](r)

)
.

(b) Let G be an r-graph on vertex set [t]. Let ~x = (x1, x2, . . . , xt) be an
optimal weighting for G satisfying x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. Then x1 <
2(xt−2r+4 + xt−2r+5) or

λ(G) ≤ 1

r!

(t− r)r−1
t−2∏

i=t−r+2

i

(t− r + 1)r−2(t− 1)r−2
<

1

r!

t−1∏
i=t−r

i

(t− 1)r
= λ

(
[t− 1](r)

)
.

Proof. (a) If x1 ≥ xt−2r+3 + xt−2r+4, then rx1 + x2 + · · · + xt−2r+2 ≥ 1.
Recalling that x1 ≥ x2 ≥ · · · ≥ xt−2r+2, we have x1 ≥ 1

t−r+1 . Using Lemma

3.1, we have λ(G) = 1
rλ(E1, x). Note that E1 is an (r − 1)-graph with t − 1

vertices and total weights at most 1 − 1
t−r+1 . Hence by Remark 3.4 (replace

the total weights 1 with 1− 1
t−r+1 ), we have

λ(G) =
1

r
λ(E1, x) ≤ 1

r

(
t− 1

r − 1

)(
1− 1

t−r+1

t− 1

)r−1
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=
1

r!

(t− r)r−1
t−2∏

i=t−r+2

i

(t− r + 1)r−2(t− 1)r−2
.

Next we prove

1

r!

(t− r)r−1
t−2∏

i=t−r+2

i

(t− r + 1)r−2(t− 1)r−2
<

1

r!

t−1∏
i=t−r

i

(t− 1)r
= λ

(
[t− 1](r)

)
.

To show this, we only need to prove

(t− r)r−2(t− 1) < (t− r + 1)r−1.(3)

If t = r, r + 1, (3) clearly holds. Assuming t ≥ r + 2, we prove this inequality
by induction. Now we suppose that (3) holds for some r ≥ 4, we will show it
also holds for r + 1. Replacing t by t− 1 in (3), we have

[t− (r + 1)]r−2(t− 2) < (t− r)r−1.

Multiplying t− (r + 1) to the above inequality, we have

[t− (r + 1)]r−1(t− 2) < (t− r)r−1[t− (r + 1)].

Adding [t− (r + 1)]r−1 to the above inequality, we obtain

[t− (r + 1)]r−1(t− 1) < (t− r)r−1[t− (r + 1)] + [t− (r + 1)]r−1

= (t− r)r − (t− r)r−1 + [t− (r + 1)]r−1 < (t− r)r.

Hence (3) also holds for r + 1 and the induction is complete.
(b) If x1 ≥ 2(xt−2r+5 +xt−2r+6), then x1 +x2 + · · ·+xt−2r+4 + (r− 2)x1

2 ≥
x1 + x2 + · · · + xt−2r+4 + xt−3 + xt−2r+6 + xt−1 + xt = 1. Recalling that
x1 ≥ x2 ≥ · · · ≥ xt−2r+4 and r ≥ 4, we have x1 ≥ 1

t−2r+4+ r−2
2

≥ 1
t−r+1 . The

rest of the proof is identical to that in part (a), we omit the computation details
here. �

Lemma 4.4. Let G be a left-compressed r-graph on the vertex set [t] without
containing [t − 1](r). Then |[t − 2r + 6](r−1)\Et−1| ≤ 2r−1|E(t−1)t| or λ(G) <

λ([t− 1](r)).

Proof. Let ~x = (x1, x2, . . . , xt) be an optimal weighting for G. Since G is left-
compressed, by Remark 3.2(a), x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. If xt = 0, then
λ(G) = λ(G,~x) < λ([t−1](r)) since G does not contain [t−1](r). So we assume
that xt > 0.

Consider a new weighting for G, ~y = (y1, y2, . . . , yt) given by yi = xi for i 6=
t− 1, t, yt−1 = xt−1 + xt and yt = 0. By Lemma 3.1(a), λ(Et−1, ~x) = λ(Et, ~x),
so

λ(G, ~y)− λ(G,~x) = xt
(
λ(Et−1, ~x)− xtλ(E(t−1)t, ~x)

)
− xt

(
λ(Et, ~x)− xt−1λ(E(t−1)t, ~x)

)
− xt−1xtλ(E(t−1)t, ~x))
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= xt
(
λ(Et−1, ~x)− λ(Et, ~x))− x2tλ(E(t−1)t, ~x

)
= − x2tλ(E(t−1)t, ~x).(4)

Assume that |[t− 2r+ 6](r−1)\Et−1| > 2r−1|E(t−1)t|. If λ(G) < λ([t− 1](r))

we are done. Otherwise if λ(G) ≥ λ
(
[t− 1](r)

)
we will show that there exists

a set of edges F ⊂ [t− 1](r) \ E satisfying

(5) λ(F, ~y) > x2tλ(E(t−1)t, ~x).

Then using (4) and (5), the r-graph G∗ = ([t], E∗), where E∗ = E∪F , satisfies
λ(G∗, ~y) = λ(G, ~y) + λ(F, ~y) > λ(G,~x) = λ(G). Since ~y has only t− 1 positive
weights, then λ(G∗, ~y) ≤ λ

(
[t− 1](r)

)
, and consequently, λ(G) < λ

(
[t− 1](r)

)
.

This is a contradiction.
We now construct the set of edges F . Let C = [t−2r+ 6](r−1) \Et−1. Then

by the assumption,

|C| > 2r−1|E(t−1)t| and λ(C, ~x) ≥ 2r−1|E(t−1)t|xt−3r+8 · · ·xt−2r+6.

Let F consist of those edges in [t − 1](r) \ E containing the vertex t − 1.
Since λ(G) ≥ λ([t− 1](r)) then xt−2r+3 >

x1

2 by Lemma 4.3(a) and xt−2r+4 ≥
xt−2r+5 >

x1

4 by Lemma 4.3(b). Hence

λ(F, ~y) = (xt−1 + xt)λ(C, ~x)

> 2xt · 2r−1|E(t−1)t|xt−3r+8 · · ·xt−2r+6

≥ x2t |E(t−1)t|(x1)r−2

≥ x2t
∑

i1···ir−2∈E(t−1)t

xi1 · · ·xir−2

= x2tλ(E(t−1)t, ~x).

Hence F satisfies (5). This proves Lemma 4.4. �

Lemma 4.5. Let G be a left-compressed r-graph on the vertex set [t] with-
out containing [t − 1](r). Then |[t − 2r + 6](r)\E| ≤ 2r−1|E(t−1)t| or λ(G) <

λ
(
[t− 1](r)

)
.

Proof. Let ~x = (x1, x2, . . . , xt) be an optimal weighting for G. Since G is left-
compressed, by Remark 3.2(a), x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. If xt = 0, then
λ(G) < λ([t − 1](r)) since G does not contain [t − 1](r). So we assume that
xt > 0.

Consider a new weighting for G, ~y = (y1, y2, . . . , yt) given by yi = xi for i 6=
t− 1, t, yt−1 = xt−1 + xt and yt = 0. By Lemma 3.1(a), λ(Et−1, ~x) = λ(Et, ~x),
similar to (4), we have

(6) λ(G, ~y)− λ(G,~x) = −x2tλ(E(t−1)t, ~x).

Assume that |[t − 2r + 6](r)\E| > 2r−1|E(t−1)t|. If λ(G) < λ([t − 1](r)) we

are done. Otherwise if λ(G) ≥ λ([t− 1](r)) we will show that there exists a set
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of edges F ⊂ [t− 2r + 6](4) \ E satisfying

(7) λ(F, ~y) > x2tλ(E(t−1)t, ~x).

Then using (6) and (7), the r-graph G∗ = ([t], E∗), where E∗ = E∪F , satisfies
λ(G∗, ~y) = λ(G, ~y) + λ(F, ~y) > λ(G,~x) = λ(G). Since ~y has only t− 1 positive
weights, then λ(G∗, ~y) ≤ λ

(
[t− 1](r)

)
, and consequently, λ(G) < λ

(
[t− 1](r)

)
.

This is a contradiction.
We now construct the set of edges F . Let C = [t− 2r + 6](r) \ E. Then by

the assumption,

|C| > 2r−1|E(t−1)t| and λ(C, ~x) ≥ 2r−1|E(t−1)t|xt−3r+7 · · ·xt−2r+6.

Let F = C. Since λ(G) ≥ λ([t− 1](r)) then xt−2r+3 ≥ x1

2 by Lemma 4.3(a)
and xt−2r+4 ≥ xt−2r+5 >

x1

4 by Lemma 4.3(b). Hence

λ(F, ~y) = λ(C, ~x) > 2r−1|E(t−1)t|xt−3r+7 · · ·xt−2r+6 ≥ x2t |E(t−1)t|(x1)r−2

≥ x2t
∑

i1···ir−2∈E(t−1)t

xi1 · · ·xir−2
= x2tλ(E(t−1)t, ~x).

Hence F satisfies (7). This proves Lemma 4.5. �

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. Let m and t be integers satisfying(
t− 1

r

)
≤ m

≤
(
t− 1

r

)
+

(
t− 2

r − 1

)
−
[
(2r − 6)× 2r−1 + 2r−3 + (r − 4)(2r − 7)− 1

]((t− 2

r − 2

)
− 1

)
.

Let G be an r-graph with t vertices and m edges without containing a clique
of order t−1 such that λ(G) = λr−(m,t−1,t). Then by Lemma 4.1, we can assume

that G is left-compressed and does not contain [t−1](r). Let ~x = (x1, x2, . . . , xt)
be an optimal weighting for G. Since G is left-compressed, by Remark 3.2(a),
x1 ≥ x2 ≥ · · · ≥ xt ≥ 0. If xt = 0, then λ(G) < λ([t − 1](r)) since G does not
contain [t− 1](r). So we assume that xt > 0.

If λ(G) < λ
(
[t− 1](r)

)
we are done. Otherwise |[t − 2r + 6](r−1)\Et−1| ≤

2r−1|E(t−1)t| by Lemma 4.4. Recalling that G is left-compressed, we have

|[t − 2r + 6](r−1)\Ei| ≤ 2r−1|E(t−1)t| for t − 2r + 7 ≤ i ≤ t − 1. We also have

|[t−2r+6](4)\E| ≤ 2r−1|E(t−1)t| by Lemma 4.5. Note that |E(t−1)t| ≤
(
t−2
r−2
)
−1,

then

|[t− 1](r)
⋂
E| ≥ |[t− 2r + 6](r)

⋂
E|+

t−1∑
i=t−2r+7

|[t− 2r + 6](r−1)
⋂
Ei|



ON CLIQUES AND LAGRANGIANS OF HYPERGRAPHS 581

≥
(
t− 2r + 6

r

)
− 2r−1|E(t−1)t|

+ (2r − 7)

((
t− 2r + 6

r − 1

)
− (2r − 7)× 2r−1|E(t−1)t|

)
≥
(
t− 2r + 6

r

)
+ (2r − 7)

(
t− 2r + 6

r − 1

)
− (2r − 6)× 2r−1

((
t− 2

r − 2

)
− 1

)
.

Repeated using the equality
(
m+1
n

)
=
(
m
n

)
+
(

m
n−1
)

to the above inequality, we
have

|[t−1](r)
⋂
E| ≥

(
t− 1

r

)
−
[
(2r − 6)× 2r−1 + (r − 4)(2r − 7)

]((t− 2

r − 2

)
−1

)
.

So

0 < |[t− 1](r)\E| ≤
[
(2r − 6)× 2r−1 + (r − 4)(2r − 7)

]((t− 2

r − 2

)
− 1

)
.

Since G does not contain [t− 1](r). Let E∗ = E
⋃

[t− 1](r) and G∗ = ([t], E∗).
Denote the number of edges of G∗ by m∗, then

(
t−1
r

)
≤ m∗ ≤

(
t−1
r

)
+
(
t−2
r−1
)
−

2r−3(
(
t−2
r−2
)
− 1). So λ(G∗) = λ

(
[t− 1](r)

)
by Theorem 2.6. Clearly, λ(G∗, ~x)−

λ(G,~x) > 0 since x1 ≥ x2 ≥ · · · ≥ xt > 0 and |[t − 1](r)\E| > 0. Hence
λ(G) = λ(G,~x) < λ(G∗, ~x) ≤ λ(G∗) = λ

(
[t− 1](r)

)
. This completes the proof

of Theorem 2.7. �

5. Proofs of Theorem 2.9

Denote λr(m,t−1) = max{λ(G) : G is an r-graph with m edges containing

a clique of order t − 1}. The following lemma implies that we only need to
consider left-compressed r-graphs G when we prove Theorem 2.9.

Lemma 5.1 ([16, Lemma 3.1]). Let m, t and r be integers satisfying
(
t−1
r

)
≤

m ≤
(
t
r

)
− 1. There exists a left-compressed r-graph G with m edges containing

[t− 1](r) such that λ(G) = λr(m,t−1).

Proof of Theorem 2.9. Let m, t and r be integers satisfying
(
t−1
r

)
≤ m ≤(

t−1
r

)
+ (r−1)r−1

(r−1)!
(t−2)···(t−r)
(t−1)r−1 . Let G be an r-graph with m edges containing

a clique of order t − 1 such that λ(G) = λr(m,t−1). Then by Lemma 5.1,

we can assume that G is left-compressed and contains [t − 1](r). Clearly,
λ(G) ≥ λ([t − 1](r)) since G contains [t − 1](r). Next we show that λ(G) ≤
λ([t − 1](r)). Let ~x = (x1, x2, . . . , xn) be an optimal weighting for G satis-
fying x1 ≥ x2 ≥ · · · ≥ xk > xk+1 = · · · = xn = 0. If k ≤ t − 1, then
λ(G) ≥ λ([t − 1](r)) since G has only t − 1 positive weights. So we assume

that k ≥ t. Since m ≤
(
t−1
r

)
+ (r−1)r−1

(r−1)!
(t−2)···(t−r)
(t−1)r−1 and G contains [t− 1]r, we
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have |Ek| ≤ (r−1)r−1

(r−1)!
(t−2)···(t−r)
(t−1)r−1 . Then by Lemma 3.1(a) and the Arithmetic

Mean-Geometric Mean inequality (AM-GM inequality), we have

λ(G) =
1

r
λ(Ek, x) ≤ 1

r

(r − 1)r−1

(r − 1)!

(t− 2) · · · (t− r)
(t− 1)r−1

x1x2 · · ·xr−1

≤ 1

r

(r − 1)r−1

(r − 1)!

(t− 2) · · · (t− r)
(t− 1)r−1

(
x1 + x2 + · · ·+ xr−1

r − 1

)r−1

(By AM-GM inequality)

≤ 1

r!

(t− 1) · · · (t− r)
(t− 1)r

= λ
(

[t− 1](r)
)
.

This completes the proof of Theorem 2.9. �

6. Remarks and conclusions

The method developed in the proof of Theorem 2.7 can also be used to deal
with the case for r = 3 (see [25]). The upper bound for m in Theorem 2.7
and Theorem 2.8 are not the best possible. Another question in the future
study is how to prove similar results as Theorem 2.7 and Theorem 2.8 without
restriction of vertex number in general.
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