DOI QR코드

DOI QR Code

결명자 에탄올 추출물이 알코올로 유도로 유도한 기억 장애에 미치는 영향

Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment

  • 권희영 (동아대학교 건강과학대학 의약생명공학과) ;
  • 조은비 (동아대학교 건강과학대학 의약생명공학과) ;
  • 전지은 (동아대학교 건강과학대학 의약생명공학과) ;
  • 이영춘 (동아대학교 건강과학대학 의약생명공학과) ;
  • 김동현 (동아대학교 건강과학대학 의약생명공학과)
  • Kwon, Huiyoung (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Cho, Eunbi (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Jeon, Jieun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Lee, Young Choon (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Kim, Dong Hyun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
  • 투고 : 2019.02.26
  • 심사 : 2019.05.15
  • 발행 : 2019.05.30

초록

최근 알코올 소비량이 증가함에 따라 과량의 에탄올을 섭취하는 경우 또한 늘어나고 있다. 이런 과도한 에탄올 섭취는 ${\gamma}$-aminobutyric acid (GABA) 수용체의 활성화와 glutamate 수용체의 활성 억제를 통해 신경계를 교란시켜 단기 기억 형성을 방해 한다. 알코올에 의한 인지기능의 저하는 알코올성 black out을 유도할 수 있으며, 반복될 경우 알코올성 치매로 이어질 수 있기 때문에 black out을 예방하는 치료제의 개발이 필요하다. 따라서 본 연구자는 해당 연구를 통하여 Cassia obtusifolia seeds 에탄올 추출물(COE)이 가진 black out 예방제로써의 가능성을 평가하였다. 본 연구에서는 에탄올에 의해 유도된 기억 장애에 대한 COE의 효과를 확인하였다. 실험 동물의 기억력을 측정하기 위하여 수동 회피 실험과 Y자 미로 실험을 수행하였고, 마우스 해마 절편을 사용하여 에탄올이 기억의 형성과 관련하여 장기 강화(long term potentiation; LTP)에 어떠한 영향을 끼치는지 전기생리학을 통해 확인하였다. 또한 ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 수용체 길항제인 NBQX ($50{\mu}M$)를 사용하여 에탄올에 의한 인지기능 장애와 관련이 있다고 알려진 N-Methyl-D-aspartate (NMDA) 매개 field 흥분성 시냅스 후 전위를 측정하였다. 결과적으로, COE는 에탄올에 의한 기억력의 손상을 방지하였고, 해마 절편에서 에탄올에 의해 감소된 LTP와 NMDA 매개 흥분성 시냅스 후 전위를 대조군과 비슷한 수준까지 회복시켰다.

Heavy drinking disrupts the nervous system by activation of GABA receptors and inhibition of glutamate receptors, thereby preventing short-term memory formation. Degradation of cognition by alcohol induces blackouts, and it can lead to alcoholic dementia if repeated. Therefore, drugs need to be developed to prevent alcohol-induced blackout. In this study, we confirmed the effect of an ethanol extract of Cassia obtusifolia seeds (COE) on alcohol-induced memory impairment. The effects of COE and ethanol on cognitive functions mice were examined using the passive avoidance and Y-maze tests. The manner in which alcohol affects long-term potentiation (LTP) in relation to the learning and memory was confirmed by electrophysiology performed on mouse hippocampal slices. We also measured N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory synapses (fEPSPs), which have a known association with cognitive impairment caused by ethanol. Ethanol caused memory impairments in passive avoidance and Y-maze tests. COE prevented these ethanol-induced memory impairments in these tests. Ethanol also blocked LTP induction in the mouse hippocampus, and COE prevented this ethanol-induced LTP deficit. Ethanol decreased NMDA receptor-mediated fEPSPs in the mouse hippocampus, and this decrease was prevented by COE. These results suggest that COE might be useful in preventing alcohol-induced neurological dysfunctions, including blackouts.

키워드

SMGHBM_2019_v29n5_564_f0001.png 이미지

Fig. 1. COE ameliorates EtOH-induced memory deficit in the passive avoidance test.

SMGHBM_2019_v29n5_564_f0002.png 이미지

Fig. 2. COE ameliorates EtOH-induced memory deficit in the Y-maze test.

SMGHBM_2019_v29n5_564_f0003.png 이미지

Fig. 3. COE reduces ethanol-induced LTP impairment.

SMGHBM_2019_v29n5_564_f0004.png 이미지

Fig. 4. COE improves ethanol-induced NMDAmediated fEPSP.

참고문헌

  1. Bauer, E. P., Schafe, G. E. and LeDoux, J. E. 2002. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239-5249. https://doi.org/10.1523/JNEUROSCI.22-12-05239.2002
  2. Bito, H., Deisseroth, K. and Tsien, R. W. 1996. CREB phosphorylation and dephosphorylation: a Ca2+-and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203-1214. https://doi.org/10.1016/S0092-8674(00)81816-4
  3. Chen, C. and Tonegawa, S. 1997. Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20, 157-184. https://doi.org/10.1146/annurev.neuro.20.1.157
  4. Citri, A. and Malenka, R. C. 2008. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18-41. https://doi.org/10.1038/sj.npp.1301559
  5. Curtin, J. J., Patrick, C. J., Lang, A. R., Cacioppo, J. T. and Birbaume, N. 2001. Alcohol affects emotion through cognition. Psychol. Sci. 6, 527-531.
  6. Deisseroth, K., Bito, H. and Tsien, R. W. 1996. Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89-101. https://doi.org/10.1016/S0896-6273(00)80026-4
  7. Dodd, P. R., Beckmann, A. M., Davidson, M. S. and Wilce, P. A. 2000. Glutamate-mediated transmission, alcohol, and alcoholism. Neurochem. Int. 37, 509-533. https://doi.org/10.1016/S0197-0186(00)00061-9
  8. Gerson, L. W. and Donald, A. P. 1979. Alcohol consumption and the incidence of violent crime. J. Stud. Alcohol. 3, 307-312. https://doi.org/10.15288/jsa.1979.40.307
  9. Joe, K. H., Kim, Y. K., Kim, T. S., Roh, S. W., Choi, S. W., Kim, Y. B., Lee, H. J. and Kim, D. J. 2007. Decreased plasma brain-derived neurotrophic factor levelsin patients with alcohol dependence. Alcohol Clin. Exp. Res. 31, 1833-1838. https://doi.org/10.1111/j.1530-0277.2007.00507.x
  10. Kim, D. H., Park, H. J., Jung, J. W. and Lee, S. 2017. Effect of the extract of Hydrangea Ducis Folium on alcohol-induced psychiatric deficits. J. Life Sci. 27, 355-360. https://doi.org/10.5352/JLS.2017.27.3.355
  11. Kranzler, H. R. and Jeffrey, V. K. 2001. Efficacy of naltrexone and acamprosate for alcoholism treatment: a meta-analysis. Alcohol Clin. Exp. Res. 25, 1335-1341. https://doi.org/10.1111/j.1530-0277.2001.tb02356.x
  12. Kril, J. J. and Glenda, M. H. 1999. Brain shrinkage in alcoholics:a decade on and what have we learned? Prog. Neurobiol. 58, 381-387. https://doi.org/10.1016/S0301-0082(98)00091-4
  13. Malenka, R. C. 1994. Synaptic plasticity in the hippocampus:LTP and LTD. Cell 78, 535-538. https://doi.org/10.1016/0092-8674(94)90517-7
  14. Nikaido, T., Ohmoto, T., Sankawa, U., Kitanaka, S. and Takido, M. 1984. Inhibitors of adenosine 3', 5'-cyclicmonophosphate phosphodiesterase in Cassia seed. Chem. Pharm. Bull. (Tokyo) 32, 3075-3078. https://doi.org/10.1248/cpb.32.3075
  15. Park, H. J., Lee, S., Jung, J. W., Lee, Y. C., Choi, S. M. and Kim, D. H. 2016. Salvia miltiorrhiza Bunge blocks ethanol-induced synaptic dysfunction through regulation of NMDA receptor-dependent synaptic transmission. Biomol. Ther. (Seoul). 24, 433-437. https://doi.org/10.4062/biomolther.2015.184
  16. Ramachandran, B., Ahmed, S., Zafar, N. and Dean, C. 2015. Ethanol inhibits long-term potentiation in hippocampal CA1 neurons, irrespective of lamina and stimulus strength, through neurosteroidogenesis. Hippocampus 25, 106-118. https://doi.org/10.1002/hipo.22356
  17. Rodriguez-Duran, L. F. and Escobar, M. L. 2014. NMDA receptor activation and PKC but not PKA lead to the modification of the long-term potentiation in the insular cortex induced by conditioned taste aversion: differential role of kinases in metaplasticity. Behav. Brain Res. 266, 58-62. https://doi.org/10.1016/j.bbr.2014.02.049
  18. Stuchlik, A. 2014. Dynamic learning and memory, synaptic plasticity and neurogenesis: an update. Front. Behav. Neurosci. 8, 106.
  19. Tizabi, Y., Getachew, B., Ferguson, C. L., Csoka, A. B., Thompson, K. M., Gomez-Paz, A., Ruda-Kucerova, J. and Taylor, R. E. 2018. Low vs. high alcohol: central benefits vs. detriments. Neurotox. Res. 34, 860-869 https://doi.org/10.1007/s12640-017-9859-x
  20. Tokuda, K., Izumi, Y. and Zorumski, C. F. 2011. Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation. J. Neurosci. 31, 9905-9909. https://doi.org/10.1523/JNEUROSCI.1660-11.2011
  21. Tsai, G., Gastfriend, D. R. and Coyle, J. T. 1995. The glutamatergic basis of human alcoholism. Am. J. Psychiatry 152, 332-340. https://doi.org/10.1176/ajp.152.3.332
  22. White, A. M. 2003. What happened? Alcohol, memory blackouts, and the brain. Alcohol Res. Health 2, 186-196.
  23. Wong, S. T., Athos, J., Figueroa, X. A., Pineda, V. V., Schaefer, M. L., Chavkin, C. C., Muglia, L. J. and Storm, D. R. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23, 787-798. https://doi.org/10.1016/S0896-6273(01)80036-2
  24. Yamin, G. 2009. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J. Neurosci. Res. 87, 1729-1736. https://doi.org/10.1002/jnr.21998
  25. Zhang, J., Li, Y., Xu, J. and Yang, Z. 2014. The role of Nmethyl-D-aspartate receptor in Alzheimer's disease. J. Neurol. Sci. 339, 123-129. https://doi.org/10.1016/j.jns.2014.01.041