DOI QR코드

DOI QR Code

Protective Effects of an Ethanol Extract of Elaeagnus umbellata Leaves on α-MSH-induced Melanin Production in B16-F0 Cells and UVB-induced Damage in CCD-986sk Cells

보리수나무 잎 에탄올 추출물이 α-MSH 유도 B16-F0 세포의 멜라닌 생성 및 UVB 유도성 CCD-986sk 세포 손상에 미치는 효과

  • Park, Se-Ho (Institute of Natural Science, Keimyung University) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Yang, Seun-Ah (Department of Food Science and Technology, Keimyung University)
  • 박세호 (계명대학교 자연과학연구소) ;
  • 지광환 (금오공과대학교 응용화학과) ;
  • 양선아 (계명대학교 식품가공학과)
  • Received : 2019.02.11
  • Accepted : 2019.04.02
  • Published : 2019.05.30

Abstract

This study was undertaken to investigate the effect of an ethanol extract of Elaeagnus umbellata leaves (EUL-EE) on skin-related biological activities. Previously, we have reported that gallic acid was the major phenolic compound in EUL-EE through quantitative analysis and that EUL-EE had an inhibitory effect against the proliferation of liver cancer HepG2 cells. In the present study, the inhibitory effects of EUL-EE on melanin production and tyrosinase activity in ${\alpha}$-melanocyte-stimulated hormone-stimulated B16-F0 cells were determined to assess the effects of EUL-EE on skin whitening. The anti-wrinkle effect using UVB-irradiated CCD-986sk cells was examined by the expression of type I procollagen and metalloproteinase (MMP)-1 release. The EUL-EE significantly decreased intracellular melanin production (33.0% inhibition at $100{\mu}g/ml$) when compared with untreated B16-F0 cells. Tyrosinase activities in the stimulated B16-F0 cells were also decreased by EUL-EE (47.8% inhibition at $100{\mu}g/ml$). The EUL-EE also dose-dependently increased the production of type I procollagen (up to 1.74-fold at $250{\mu}g/ml$) in CCD-986sk cells when compared with UVB-irradiated controls. EUL-EE showed no cytotoxicity at concentrations up to $500{\mu}g/ml$. In addition, EUL-EE at $10-500{\mu}g/ml$ inhibited the release of MMP-1 to the medium from UVB-irradiated CCD-986sk cells. Taken together, these observations indicate that EUL-EE has high potential for use as inner beauty and cosmetic materials due to its whitening and anti-wrinkle effects.

본 연구는 보리수나무 잎 에탄올추출물의 피부와 관련된 생리활성을 보고하였다. 선행 연구에서 보리수나무 잎 에탄올 추출물의 정량 분석을 통해 갈산이 중요한 페놀 화합물임을 확인하였고 HepG2 간암 세포의 증식에 대한 억제 효과를 보고한 바 있다. 본 연구에서는 ${\alpha}$-멜라닌 세포 자극 호르몬으로 유도된 B16-F0 세포에서의 멜라닌 생성 및 타이로시나제 활성에 대한 보리수나무 잎 에탄올 추출물의 억제 효과를 측정하여 보리수나무 잎 에탄올 추출물이 피부 미백에 미치는 영향을 평가하였다. 또한 UVB가 조사된 CCD-986sk 세포를 사용하고, type I procollagen과 metalloproteinase-1 (MMP-1) 방출을 측정하여 보리수나무 잎 에탄올 추출물의 주름 개선 효과를 조사하였다. 보리수나무 잎 에탄올 추출물이 처리되지 않은 B16-F0 세포와 비교하였을 때 세포 내 멜라닌 생성을 유의적으로 감소시켰다는 것을 나타내었다($100{\mu}g/ml$에서 33.0% 억제). ${\alpha}$-멜라닌 세포 자극 호르몬으로 유도된 B16-F0 세포에서의 타이로시나제 활성은 보리수나무 잎 에탄올 추출물에 의해 감소되었다($100{\mu}g/ml$에서 47.8% 억제). 또한, 보리수나무 잎 에탄올 추출물을 처리하였을 때 UVB 조사 대조군에 비해 CCD-986sk 세포에서 용량 의존적으로 type I procollagen ($250{\mu}g/ml$에서 1.74배)의 생산을 증가시켰다. 또한, 보리수나무 잎 에탄올 추출물은 $10-500{\mu}g/ml$의 농도에서 UVB가 조사된 CCD-986sk 세포의 MMP-1 방출을 억제했다. 이상의 결과로부터, 보리수나무 잎 에탄올추출물이 피부미백 및 주름 생성 억제 활성을 나타내는 피부 건강에 유용한 식용 소재임을 확인하였다.

Keywords

SMGHBM_2019_v29n5_555_f0001.png 이미지

Fig. 1. Effects of EUL-EE on melanin production and tyrosinase activities in α-MSH-stimulated B16-F0 melanocytes.

SMGHBM_2019_v29n5_555_f0002.png 이미지

Fig. 2. Inhibition of EUL-EE on mushroom tyrosinase.

SMGHBM_2019_v29n5_555_f0003.png 이미지

Fig. 3. Inhibition of EUL-EE on the collagenase activity.

SMGHBM_2019_v29n5_555_f0004.png 이미지

Fig. 4. Anti-wrinkle effects of EUL-EE in UVB-irradiated CCD-986sk human dermal cells (15 mJ/㎠).

SMGHBM_2019_v29n5_555_f0005.png 이미지

Fig. 5. Inhibitory effects of EUL-EE on ROS generation in UVB-irradiated CCD-986sk human dermal cells.

References

  1. An, B. J., Lee, C. E., Son, J. H., Lee, J. Y., Choi, G. H. and Park, T. S. 2005. Antioxidant, anticancer and tyrosinase inhibition activities of extracts from Rhododendron mucronulatum T. J. Kor. Soc. Appl. Biol. Chem. 48, 280-284.
  2. Fagot, D., Asselineau, D. and Bernerd, F. 2002. Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation. Arch. Dermatol. Res. 293, 576-583. https://doi.org/10.1007/s00403-001-0271-1
  3. Fordham, I. M. 2001. Fruit of autumn olive: A rich source of lycopene. Hortscience 36, 1136-1137. https://doi.org/10.21273/HORTSCI.36.6.1136
  4. Herrling, T., Jung, K. and Fuchs, J. 2006. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 63, 840-845. https://doi.org/10.1016/j.saa.2005.10.013
  5. Khan, S. and Yeole, P. G. 2005. 26-protective effects of tomato in coronary heart diseases: a nutraceutical perspective. Health Administrator. XX, 104-108.
  6. Khattak, K. F. 2012. Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry. J. Med. Plants Res. 6, 5196-5203. https://doi.org/10.5897/JMPR11.1128
  7. Kim, K. S., Kim, J. A., Eom, S. Y., Lee, S. H., Min, K. R. and Kim, Y. 2006. Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment Cell Res. 19, 90-98. https://doi.org/10.1111/j.1600-0749.2005.00281.x
  8. Kim, M. J., Lim, J. S. and Yang, S. A. 2016. Component analysis and anti-proliferative effects of ethanol extracts of fruits, leaves, and stems from Elaeagnus umbellata in HepG2 cells. J. Kor. Soc. Food Sci. Nutr. 45, 828-834. https://doi.org/10.3746/jkfn.2016.45.6.828
  9. Kim, S. Y., Kim, D. S., Kwon, S. B., Park, E. S., Huh, C. H., Youn, S. W., Kim, S. W. and Park, K. C. 2005. Protective effects of EGCG on UVB-induced damage in living skin equivalents. Arch. Pharm. Res. 28, 784-790. https://doi.org/10.1007/BF02977343
  10. Kim, Y. J. and Uyama, H. 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci. 62, 1707-1723. https://doi.org/10.1007/s00018-005-5054-y
  11. Kohl, E., Steinbauer, J., Landthaler, M. and Szeimies, R. M. 2011. Skin ageing. J. Eur. Acad. Dermatol. Venereol. 25, 873-884. https://doi.org/10.1111/j.1468-3083.2010.03963.x
  12. Langton, A. K., Sherratt, M. J., Griffiths, C. E. M. and Watson, R. E. B. 2010. A new wrinkle on old skin: the role of elastic fibres in skin ageing. Int. J. Cosmet. Sci. 32, 330-339. https://doi.org/10.1111/j.1468-2494.2010.00574.x
  13. Lim, H. and Kim, H. P. 2007. Inhibition of mammalian collagenase, matrix metalloproteinase-1, by naturally-occurring flavonoids. Planta Med. 73, 1267-1274. https://doi.org/10.1055/s-2007-990220
  14. Lim, Y. J., Lee, E. H., Kang, T. H., Ha, S. K., Oh, M. S., Kim, S. M., Yoon, T. J., Kang, C., Park, J. H. and Kim, S. Y. 2009. Inhibitory effects of arbutin on melanin biosynthesis of ${\alpha}$-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch. Pharm. Res. 32, 367-373. https://doi.org/10.1007/s12272-009-1309-8
  15. Mukherjee, P. K., Maity, N., Nema, N. K. and Sarkar, B. K. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine 19, 64-73. https://doi.org/10.1016/j.phymed.2011.10.003
  16. Palumbo, A., D'lschia, M., Misuraca, G. and Prota, G. 1991. Mechanism of inhibition of melanogenesis by hydroquinone. Biochim. Biophys. Acta 1073, 85-90. https://doi.org/10.1016/0304-4165(91)90186-K
  17. Rho, H. S., Ghimeray, A. K., Yoo, D. S., Ahn, S. M., Kwon, S. S., Lee, K. H., Cho, D. H. and Cho, J. Y. 2011. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules 16, 3338-3344. https://doi.org/10.3390/molecules16043338
  18. Sabir, M. S., Ahmad, D. S., Hussain, I. M. and Tahir, K. M. 2007. Antibacterial activity of Elaeagnus umbellata (Thunb.) a medicinal plant from Pakistan. Saudi. Med. J. 28, 259-263.
  19. Sahni, S., Hannan, M. T., Blumberg, J., Cupples, L. A., Kiel, D. P. and Tucker, K. L. 2009. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the framingham osteoporosis study. J. Bone Miner Res. 24, 1086-1094. https://doi.org/10.1359/jbmr.090102
  20. Sinha, R. P. and Hader, D. P. 2002. UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1, 225-236. https://doi.org/10.1039/b201230h
  21. Su, T. R., Lin, J. J., Tsai, C. C., Huang, T. K., Yang, Z. Y., Wu, M. O., Zheng, Y. Q., Su, C. C. and Wu, Y. J. 2013. Inhibition of melanogenesis by gallic acid: Possible involvement of the PI3K/Akt, MEK/ERK and Wnt/${\beta}$-catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci. 14, 20443-20458. https://doi.org/10.3390/ijms141020443
  22. Svobodova, A., Psotova, J. and Walterova, D. 2003. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 147, 137-145. https://doi.org/10.5507/bp.2003.019
  23. Tsuji, N., Moriwaki, S., Suzuki, Y., Takema, Y. and Imokawa, G. 2001. The role of elastases secreted by fibroblasts in wrinkle formation: Implication through selective inhibition of elastase activity. Photochem. Photobiol. 74, 283-290. https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  24. Wang, L., Liu, S., Manson, J. E., Gaziano, M., Buring, J. E. and Sesso, H. D. 2006. The consumption of lycopene and tomato-based food products is not associated with the risk of type 2 diabetes in women. Nutr. Epidermiol. 136, 620-625.
  25. Yilmaz, Y. and Toledo, R. T. 2004. Major Flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 52, 255-260. https://doi.org/10.1021/jf030117h
  26. Zillich, O. V., Schweiggert-Weisz, U., Eisner, P. and Kerscher, M. 2015. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 37, 455-464. https://doi.org/10.1111/ics.12218