DOI QR코드

DOI QR Code

Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가

Evaluation of the Anti-oxidant Activity of Pueraria Extract Fermented by Lactobacillus rhamnosus BHN-LAB 76

  • 김병혁 (비에이치앤바이오 생물산업소재개발연구소) ;
  • 장종옥 (안동대학교 원예.생약융합학부) ;
  • 이준형 (비에이치앤바이오 생물산업소재개발연구소) ;
  • 박예은 (비에이치앤바이오 생물산업소재개발연구소) ;
  • 김중규 (비에이치앤바이오 생물산업소재개발연구소) ;
  • 윤여초 (비에이치앤바이오 생물산업소재개발연구소) ;
  • 정수진 (비에이치앤바이오 생물산업소재개발연구소) ;
  • 권기석 (안동대학교 원예.생약융합학부) ;
  • 이중복 (비에이치앤바이오 생물산업소재개발연구소)
  • Kim, Byung-Hyuk (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Jang, Jong-Ok (Division of Horticulture & Medicinal Plant, Andong National University) ;
  • Lee, Jun-Hyeong (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Park, Ye-Eun (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Kim, Jung-Gyu (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Yoon, Yeo-Cho (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Jeong, Su Jin (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Kwon, Gi-Seok (Division of Horticulture & Medicinal Plant, Andong National University) ;
  • Lee, Jung-Bok (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.)
  • 투고 : 2018.12.16
  • 심사 : 2019.03.29
  • 발행 : 2019.05.30

초록

칡의 화합물은 동양 전통 의학에서 매우 중요한 콩과 식물로서 다량의 이소플라본을 함유한다고 보고되었다. 그러나, 칡의 주요 함유 이소플라본은 생물학적으로 이용가능성이 낮기 때문에, 생물학적 이용가능성을 증대시키기 위해서는 가수분해나 ${\beta}$-glucosidase를 사용하여 생물전환을 통해 이용 효율성을 증대시킬 수 있다. 본 연구는 김치로 부터 분리된 Lactobacillus rhamnosus BHN-76를 이용해 발효한 칡 추출물의 항산화 효과를 조사하였다. L. rhamnosus BHN-76 발효는 $37^{\circ}C$에서 3일간 발효하였으며, 발효하지 않은 칡 추출물에 비해 L. rhamnosus BHN-76 발효 칡 추출물에서 총 폴리페놀 함량은 약 134%, 총 플라보노이드 함량은 약 110% 증가된 것을 확인하였다. 또한, SOD 유사활성능, DPPH radical 소거 활성능과 ABTS radical 소거활성능은 각각 약 213%, 190%와 107% 항산화능이 증가하는 것을 확인하였다. 이 결과를 통해 L. rhamnosus BHN-76을 이용한 칡의 발효가 가능하며, 유산균 발효가 칡의 항산화능 증대에 효과적인 것을 확인하였으며 본 연구를 기반으로 한 기능성 식품 또는 화장품 소재로의 개발 및 응용이 가능할 것으로 기대된다.

The phytochemical compounds of Pueraria, a medicinally important leguminous plant, include various isoflavones that have weak estrogenic activity and a potential role in preventing chronic disease, cancer, osteoporosis, and postmenopausal syndrome. However, the major isoflavones are derivatives of puerarin and occur mainly as unabsorbable and biologically inactive glycosides. The bioavailability of the glucosides can be increased by hydrolysis of the sugar moiety using ${\beta}$-glucosidase. In this study, we investigated the antioxidant effects of a Pueraria extract after fermentation by Lactobacillus rhamnosus BHN-LAB 76. The L. rhamnosus BHN-LAB 76 strain was inoculated into Pueraria powder and fermented at $37^{\circ}C$ for 72 hr. The total polyphenol content of the Pueraria extract increased by about 134% and the total flavonoid content increased around 110% after fermentation with L. rhamnosus BHN-LAB 76 when compared to a non-fermented Pueraria extract. Superoxide dismutase-like activities, DPPH radical scavenging, and ABTS radical scavenging increased by approximately 213%, 190%, and 107%, respectively, in the fermented Pueraria extract compared to the non-fermented Pueraria extract. Fermentation of Pueraria extracts with L. rhamnosus BHN-LAB 76 is therefore possible and can effectively increase the antioxidant effects. These results can be applied to the development of improved foods and cosmetic materials.

키워드

SMGHBM_2019_v29n5_545_f0001.png 이미지

Fig. 1. Phylogenetic tree of the L. rhamnosus BHN-LAB 76 and related bacteria of the Lactobacillus group based on 16S rRNA gene sequence comparisons. The sequences of isolated strains were compared with available from the GenBank database.

SMGHBM_2019_v29n5_545_f0002.png 이미지

Fig. 2. Quantitative analysis of L. rhamnosus BHN-LAB 76 in the P. thunbergiana fermentation process by the Realtime PCR.

SMGHBM_2019_v29n5_545_f0003.png 이미지

Fig. 3. Superoxide dismutase like activity of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76. SOD-like activity was measured at 420 nm. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHNLAB 76, C; vitamin C 500 ppm.

SMGHBM_2019_v29n5_545_f0004.png 이미지

Fig. 4. DPPH radical scavenging activity of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHNLAB 76. DPPH radical scavenging activity was measured at 517 nm. Percent scavenging of the DPPH free radical was quantified compared to the control. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHN-LAB 76, C; vitamin C 500 ppm.

SMGHBM_2019_v29n5_545_f0005.png 이미지

Fig. 5. ABTS radical activity of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76. SOD-like activity was measured at 734 nm. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHN-LAB 76, C; vitamin C 500 ppm.

SMGHBM_2019_v29n5_545_f0006.png 이미지

Fig. 6. Reducing power of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76. Reducing power was measured at 700 nm. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHN-LAB 76, C; vitamin C 500 ppm.

Table 1. Quantification of L. rhamnosus BHN-LAB 76 in the P. thunbergiana fermentation process using the Lactobacillus sp. 16S rRNA gene by the Real-time PCR

SMGHBM_2019_v29n5_545_t0001.png 이미지

Table 2. Total polyphenol and total flavonoid contents of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76

SMGHBM_2019_v29n5_545_t0002.png 이미지

참고문헌

  1. Ann, Y. G. 2011. Probiotic lactic acid bacteria. Kor. J. Food Nutr. 24, 817-832. https://doi.org/10.9799/ksfan.2011.24.4.817
  2. Aruoma, O. I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. JAOCS 75, 199-212. https://doi.org/10.1007/s11746-998-0032-9
  3. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 121, 1999.
  4. Castillo, M., Martin-Orue, S. M., Manzanilla, E. G., Badiola, I., Martin, M. and Gasa, J. 2005. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet. Microbiol. 114, 165-170. https://doi.org/10.1016/j.vetmic.2005.11.055
  5. Cherdshewasart, W., Subtang, S. and Dahlan, W. 2007. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J. Pham. Biomed. Anal. 43, 428-434. https://doi.org/10.1016/j.jpba.2006.07.013
  6. Cho, Y. H., Imm, J. Y., Kim, H. Y., Hong, S. G., Hwang, S. J., Park, D. J. and Oh, S. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Kor. J. Food Sci. An. Resour. 29, 640-646. https://doi.org/10.5851/kosfa.2009.29.5.640
  7. Forney, L. J., Zhou, X. and Brown, C. J. 2004. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol. 7, 210-220. https://doi.org/10.1016/j.mib.2004.04.015
  8. Gheldof, N. and Engeseth, N. J. 2002. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum J. Agric. Food Chem. 50, 3050-3055. https://doi.org/10.1021/jf0114637
  9. Halliwell, B., Aeschbach, R., Lliger, J. and Aruoma, O. I. 1995. The characterization of antioxidants. Food Chem. Toxicol. 33, 601-617. https://doi.org/10.1016/0278-6915(95)00024-V
  10. Han, S. H., Kim, J. B., Min, S. G. and Lee, C. H. 1995. The effect of Puerariae radix catechins administration on liver function in carbon tetrachloride-treated rats. J. Kor. Soc. Food Sci. Nutr. 25, 713-719.
  11. Han, S. R., Noh, M. Y., Lee, J. H. and Oh, T. J. 2015. Evaluation of antioxidant and antimicrobial activities of solvent extracts from Coriolus versicolor. J. Kor. Soc. Food Sci. Nutr. 44, 1793-1798. https://doi.org/10.3746/jkfn.2015.44.12.1793
  12. Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J. and Vavreinova, S. 2002. Buckwheat-the source of antioxidant activity in functional foods. Food Res. Int. 35, 207-211. https://doi.org/10.1016/S0963-9969(01)00185-5
  13. Hyon, J. S., Kang, S. M., Han, S. W., Kang, M. C., Oh, M. C., Oh, C. K., Kim, D. W., Jeon, Y. J. and Kim, S. H. 2009. Flavonoid component changes and antioxidant activities of fermented Citrus grandis Osbeck peel. J. Kor. Soc. Food Sci. Nutr. 38, 1310-1316. https://doi.org/10.3746/jkfn.2009.38.10.1310
  14. Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H. and Itakura, Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 60, 417-420. https://doi.org/10.1055/s-2006-959522
  15. Ioku, K., Pongpiriyadach, Y., Konishi, Y., Takei, Y., Nakatani, N. and Terao, J. 1998. ${\beta}$-Glucosidase activity in the rat small intestine toward quercitin monoglucosides. Biosci. Biotechnol. Biochem. 62, 1425-1431. https://doi.org/10.1271/bbb.62.1425
  16. Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T. and Tatematsu, M. 1986. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 24, 1071-1082. https://doi.org/10.1016/0278-6915(86)90291-7
  17. Ivar do Sul, J. A. and Costa, M. F. 2014. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352-364. https://doi.org/10.1016/j.envpol.2013.10.036
  18. Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y. and Kikuchi, M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130, 1695-1699. https://doi.org/10.1093/jn/130.7.1695
  19. Jeong, H. J., Park, S. B., Kim, S. A. and Kim, H. K. 2007. Total polyphenol content and antioxidative activity of wild grape (Vitis coignetiae) extracts depending on ethanol concentrations. J. Kor. Soc. Food Sci. Nutr. 36, 1491-1496. https://doi.org/10.3746/jkfn.2007.36.12.1491
  20. Jung, H. K., Kim, E. Y., Yae, H. S., Choi, S. J., Jung, J. Y. and Juhn, S. L. 2000. Cholesterol-lowering effect of lactic acid bacteria and fermented milks as probiotic functional foods. Food Ind. Nutr. 5, 29-35.
  21. Jung, T. D., Shin, G. H., Kim, J. M., Choi, S. I., Lee, J. H., Lee, S. J., Heo, I. Y., Park, S. J., Oh, S. K., Woo, K. S., Lim, J. K. and Lee, O. H. 2016. Isoflavone, ${\beta}$-glucan content and antioxidant activity of defatted soybean powder by bioconversion with Lentinula edodes. J. Food Hyg. Saf. 31, 386. https://doi.org/10.13103/JFHS.2016.31.5.386
  22. Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J. and Hoyt, J. E. 1997. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health. J. Altern. Complement. Med. 3, 7-12. https://doi.org/10.1089/acm.1997.3.7
  23. Keung, W. M. and Vallee, B. L. 1993. Daidzein a potent selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc. Natl. Acad. Sci. USA. 90, 1247-1251. https://doi.org/10.1073/pnas.90.4.1247
  24. Kim, B. H., Jang, J. O., Joa, J. H., Kim, J. A., Song, S. Y., Lim, C. K., Kim, C. H., Jung, Y. B., Seong, K. C., Kim, H. S. and Moon, D. G. 2017. A comparison of the microbial diversity in Korean and Chinese post-fermented teas. Microbiol. Biotechnol. Lett. 45, 71-80. https://doi.org/10.4014/mbl.1702.02006
  25. Kim, C. K. 2001. Ginseng sponins processing by using bioconversion technology. The Korean Ginseng Research and Industry 6, 3-13.
  26. Kim, E. J., Choi, J. Y., Yu, M. R., Kim, M. Y., Lee, S. H. and Lee, B. H. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Kor. J. Food Sci. Technol. 44, 337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
  27. Kim, H. Y., Hong, J. H., Kim, D. S., Kang, K. J., Han, S. B., Lee, E. J., Chung, H. W., Song, K. H., Sho, K. A., Kwack, S. J., Kim, S. S., Park, K. L., Lee, S. K., Kim, M. C., Kim, C. M. and Song, I. S. 2003. Isoflavone content and estrogen activity in arrowroot Puerariae Radix. Food Sci. Biotechnol. 12, 29-35.
  28. Kim, J. S., Lee, J. H., Surh, J., Kang, S. A. and Jang, K. H. 2016. Aglycone isoflavones and exopolysaccharides produced by Lactobacillus acidophilus in fermented soybean paste. Prev. Nutr. Food Sci. 21, 117-123. https://doi.org/10.3746/pnf.2016.21.2.117
  29. Kim, M. H. 2015. Biological activity of ethanol extracts from fermented Opuntia humifusa with 3 different mushroom mycelia. J. Kor. Soc. Food Sci. Nutr. 28, 620-627.
  30. Kim, S. I., Sim, K. H., Ju, S. Y. and Han, Y. S. 2009. A Study on antioxidative and hypoglycemic activities of Omija (Schizandra chinensis Baillon) extract under variable extract conditions. Kor. J. Food Nutr. 22, 41-47.
  31. Larson, R. A. 1988. The antioxidants of higher plants. Phytochemistry 27, 969-978. https://doi.org/10.1016/0031-9422(88)80254-1
  32. Lee, K. J., Gu, M. J., Roh, J. H., Jung, P., M. and Ma, J. Y. 2013. Quantitative analysis of bioconversion constituents of insampeadock-san using various fermented bacteria. Yakhak Hoeji 57, 167-172.
  33. Lee, M. Y., Yoo, M. S., Whang, Y. J., Jin, Y. J., Hong, M. H. and Pyo, Y. H. 2012. Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Kor. J. Food Sci. Technol. 44, 540-544. https://doi.org/10.9721/KJFST.2012.44.5.540
  34. Lee, W. H., Han, S. R., Yu, S. C. and Oh, T. J. 2018. Comparison of physiological activities of Flammulina velutipes according to solvent extractions. J. Kor. Soc. Food Sci. Nutr. 47, 83-89. https://doi.org/10.3746/jkfn.2018.47.1.083
  35. Lim, J. D., Cha, H. S., Choung, M. G., Choi, R. N., Choi, D. J. and Youn, A. R. 2004. Antioxidant activities of acidic ethanol extract and the anthocyanin rich fraction from Aronia melanocarpa. Kor. J. Food Cook Sci. 30, 573-578. https://doi.org/10.9724/kfcs.2014.30.5.573
  36. Linares, D. M., Gomez, C., Renes, E., Fresno, J. M., Tornadijo, M. E., Ross, R. P. and Stanton, C. 2017. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 8, 846. https://doi.org/10.3389/fmicb.2017.00846
  37. Ljungh, A. and Wadstrom, T. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7, 73-90.
  38. Marklund, S. and Marklund, G. 1974. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. FEBS J. 47, 469-474.
  39. Murota, K., Shimizu, S., Miyamoto, S., Izumi, T., Obata, A., Kikuchi, M. and Terao, J. 2002. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells:Comparison of isoflavonoids and flavonoids. J. Nutr. 132, 1956-1961. https://doi.org/10.1093/jn/132.7.1956
  40. Oh, J., Lee, K. S., Son, H. Y. and Kim, S. Y. 1990. Antioxidative components of Pueraria root. Kor. J. Food Sci. Technol. 22, 793-800.
  41. Osawa, T. 1994 Novel natural antioxidants for utilization in food and biological systems. Japan Scientific Societies, Tokyo, Japan.
  42. Oyaizu, M. 1986. Studies on product of browning reaction prepared from glucose amine. Jap. J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  43. Park, Y. E., Kim, B. H., Yoon, Y. C., Kim, J. K., Lee, J. H., Kwon, G. S., Hwang, H. S. and Lee, J. B. 2018. Total polyphenol contents, flavonoid contents, and antioxidant activity of roasted-flaxseed extracts based on lactic-acid bacteria fermentation. J. Life Sci. 28, 547-554. https://doi.org/10.5352/JLS.2018.28.5.547
  44. Park, Y. E., Kwon, G. S., Kim, B. H. and Lee, J. B. 2019. Usefulness evaluation for anti-oxidative and whitening effects of the fermented Thistle (Cirsium japonicum) with Lactobacillus rhamnosus BHN-LAB 105. Asian J. Beauty Cosmetol. in press.
  45. Poojary, M. M., Dellarosa, N., Roohinejad, S., Koubaa, M., Tylewicz, U., Gomez-Galindo, F., Saraiva, J. A., Rosa, M. D. and Barba, F. J. 2017. Influence of innovative processing on ${\gamma}$-aminobutyric acid (GABA) contents in plant food materials. Compr. Rev. Food Sci. F. 16, 895-905. https://doi.org/10.1111/1541-4337.12285
  46. Rice Evans, C., Miller, N. and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  47. Saez-Lara, M. J., Gomez-Llorente, C., Plaza-Diaz, J. and Gil, A. 2015. The role of probiotic lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials. Biomed Res. Int. 2015, 505878. https://doi.org/10.1155/2015/505878
  48. Saito, M., Sakagami, H. and Fujisawa, S. 2002. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticancer Res. 23, 4693-4701.
  49. Samak, G., Shenoy, R. P., Manjunatha, S. M. and Vinayak, K. S. 2009. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata. Food Chem. 115, 631-634. https://doi.org/10.1016/j.foodchem.2008.12.078
  50. Setchell, K. D. R. and Cassidy, A. 1999. Dietary isoflavones:Biological effects and relevance to human health. J. Nutr. 129, 758-767. https://doi.org/10.1093/jn/129.3.758S
  51. Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D'angelo, V. and Circosta, C. 2016. Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of cannabis sativa l. Phytother. Res. 30, 1298-1307. https://doi.org/10.1002/ptr.5623
  52. Song, H. S., Kim, H. K., Min, H. O., Choi, J. D. and Kim, Y. M. 2011. Changes in physicochemical and sensory properties of hizikia fusiforme water extract by fermentation of lactic acid bacteria. Kor. J. Fish Aquat. Sci. 44, 104-110. https://doi.org/10.5657/kfas.2011.44.2.104
  53. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  54. Tannock, G. W. 1997. Probiotic properties of lactic acid bacteria:plenty of scope for fundamental R&D. Trends Biotechnol. 15, 270-274. https://doi.org/10.1016/S0167-7799(97)01056-1
  55. Vrijheid, M., Casas, M., Gascon, M., Valvi, D. and Nieuwenhuijsen, M. 2016. Environmental pollutants and child health-A review of recent concerns. Int. J. Hyg. Envir. Heal. 219, 331-342. https://doi.org/10.1016/j.ijheh.2016.05.001
  56. Waltenberger, B., Halabalaki, M., Schwaiger, S., Adamopoulos, N., Allouche, N., Fiebich, B. L., Hermans, N., Jansen-Durr, P., Kesternich, V., Pieters, L., Schonbichler, S., Skaltsounis, A. L., Tran, H., Trougakos, I. P., Viljoen, A., Wolfender, J. L., Wolfrum, C., Xynos, N. and Stuppner, H. 2018. Novel natural products for healthy ageing from the medi terranean diet and food plants of other global sources-The MediHealth Project. Molecules 23, 1097. https://doi.org/10.3390/molecules23051097
  57. Xiaohai, W., C. S., G. and Tsao, G. T. 1998. Bioconversion of fumaric acid to succinic acid by reconbinant E. coli. Appl. Biochem. Biotechnol. 70, 919-928. https://doi.org/10.1007/BF02920202
  58. Yoon, Y. C., Kim, B. H., Kim, J. K., Lee, J. H., Park, Y. E., Kwon, G. S., Hwang, H. S. and Lee, J. B. 2018. Verification of biological activities and tyrosinase inhibition of ethanol extracts from Hemp Seed (Cannabis sativa L.) fermented with lactic acid bacteria. J. Life Sci. 28, 688-696. https://doi.org/10.5352/JLS.2018.28.6.688
  59. Yoshino, M. and Murakami, K. 1998. nteraction of iron with polyphenolic compounds: application to antioxidant characterization. Anal. Biochem. 257, 40-44. https://doi.org/10.1006/abio.1997.2522
  60. Yu, S. C. and Oh, T. J. 2016. Antioxidant activities and antimicrobial effects of extracts from Auricularia auricula-judae. J. Kor. Soc. Food Sci. Nutr. 45, 327-332. https://doi.org/10.3746/jkfn.2016.45.3.327
  61. Yuan, J. P., Wang, J. H. and Liu, X. 2007. Metabolism of dietary soy isoflavones to equol by human intestinal microflora - implications for health. Mol. Nutr. Food Res. 51, 765-781. https://doi.org/10.1002/mnfr.200600262
  62. Yun, Y. J., Lee, A., Nguyen, T. M. T., Park, J. T., Yun, S. M. and Kim, J. 2018. Bioconversion of onino extract to improve the bioavailablility of quercetin glycoconjugate. Korean J. Food Sci. Technol. 50, 391-399. https://doi.org/10.9721/KJFST.2018.50.4.391
  63. Zeng, C. Y., Zhang, L. Y., Zhou, Y. P. and Fan, L. L. 1982. Pharmacological studies on Pueraria radix. Clin. Med. J. 95, 145-150.
  64. Zhishen, J., Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2