Fig. 1. Phylogenetic tree of the L. rhamnosus BHN-LAB 76 and related bacteria of the Lactobacillus group based on 16S rRNA gene sequence comparisons. The sequences of isolated strains were compared with available from the GenBank database.
Fig. 2. Quantitative analysis of L. rhamnosus BHN-LAB 76 in the P. thunbergiana fermentation process by the Realtime PCR.
Fig. 3. Superoxide dismutase like activity of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76. SOD-like activity was measured at 420 nm. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHNLAB 76, C; vitamin C 500 ppm.
Fig. 4. DPPH radical scavenging activity of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHNLAB 76. DPPH radical scavenging activity was measured at 517 nm. Percent scavenging of the DPPH free radical was quantified compared to the control. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHN-LAB 76, C; vitamin C 500 ppm.
Fig. 5. ABTS radical activity of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76. SOD-like activity was measured at 734 nm. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHN-LAB 76, C; vitamin C 500 ppm.
Fig. 6. Reducing power of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76. Reducing power was measured at 700 nm. NF; Non-fermented P. thunbergiana extracts, F; fermented P. thunbergiana extracts by L. rhamnosus BHN-LAB 76, C; vitamin C 500 ppm.
Table 1. Quantification of L. rhamnosus BHN-LAB 76 in the P. thunbergiana fermentation process using the Lactobacillus sp. 16S rRNA gene by the Real-time PCR
Table 2. Total polyphenol and total flavonoid contents of extracts from the fermented P. thunbergiana extracts with L. rhamnosus BHN-LAB 76
참고문헌
- Ann, Y. G. 2011. Probiotic lactic acid bacteria. Kor. J. Food Nutr. 24, 817-832. https://doi.org/10.9799/ksfan.2011.24.4.817
- Aruoma, O. I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. JAOCS 75, 199-212. https://doi.org/10.1007/s11746-998-0032-9
- Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 121, 1999.
- Castillo, M., Martin-Orue, S. M., Manzanilla, E. G., Badiola, I., Martin, M. and Gasa, J. 2005. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet. Microbiol. 114, 165-170. https://doi.org/10.1016/j.vetmic.2005.11.055
- Cherdshewasart, W., Subtang, S. and Dahlan, W. 2007. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J. Pham. Biomed. Anal. 43, 428-434. https://doi.org/10.1016/j.jpba.2006.07.013
- Cho, Y. H., Imm, J. Y., Kim, H. Y., Hong, S. G., Hwang, S. J., Park, D. J. and Oh, S. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Kor. J. Food Sci. An. Resour. 29, 640-646. https://doi.org/10.5851/kosfa.2009.29.5.640
- Forney, L. J., Zhou, X. and Brown, C. J. 2004. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol. 7, 210-220. https://doi.org/10.1016/j.mib.2004.04.015
- Gheldof, N. and Engeseth, N. J. 2002. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum J. Agric. Food Chem. 50, 3050-3055. https://doi.org/10.1021/jf0114637
- Halliwell, B., Aeschbach, R., Lliger, J. and Aruoma, O. I. 1995. The characterization of antioxidants. Food Chem. Toxicol. 33, 601-617. https://doi.org/10.1016/0278-6915(95)00024-V
- Han, S. H., Kim, J. B., Min, S. G. and Lee, C. H. 1995. The effect of Puerariae radix catechins administration on liver function in carbon tetrachloride-treated rats. J. Kor. Soc. Food Sci. Nutr. 25, 713-719.
- Han, S. R., Noh, M. Y., Lee, J. H. and Oh, T. J. 2015. Evaluation of antioxidant and antimicrobial activities of solvent extracts from Coriolus versicolor. J. Kor. Soc. Food Sci. Nutr. 44, 1793-1798. https://doi.org/10.3746/jkfn.2015.44.12.1793
- Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J. and Vavreinova, S. 2002. Buckwheat-the source of antioxidant activity in functional foods. Food Res. Int. 35, 207-211. https://doi.org/10.1016/S0963-9969(01)00185-5
- Hyon, J. S., Kang, S. M., Han, S. W., Kang, M. C., Oh, M. C., Oh, C. K., Kim, D. W., Jeon, Y. J. and Kim, S. H. 2009. Flavonoid component changes and antioxidant activities of fermented Citrus grandis Osbeck peel. J. Kor. Soc. Food Sci. Nutr. 38, 1310-1316. https://doi.org/10.3746/jkfn.2009.38.10.1310
- Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H. and Itakura, Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 60, 417-420. https://doi.org/10.1055/s-2006-959522
-
Ioku, K., Pongpiriyadach, Y., Konishi, Y., Takei, Y., Nakatani, N. and Terao, J. 1998.
${\beta}$ -Glucosidase activity in the rat small intestine toward quercitin monoglucosides. Biosci. Biotechnol. Biochem. 62, 1425-1431. https://doi.org/10.1271/bbb.62.1425 - Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T. and Tatematsu, M. 1986. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 24, 1071-1082. https://doi.org/10.1016/0278-6915(86)90291-7
- Ivar do Sul, J. A. and Costa, M. F. 2014. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 185, 352-364. https://doi.org/10.1016/j.envpol.2013.10.036
- Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y. and Kikuchi, M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130, 1695-1699. https://doi.org/10.1093/jn/130.7.1695
- Jeong, H. J., Park, S. B., Kim, S. A. and Kim, H. K. 2007. Total polyphenol content and antioxidative activity of wild grape (Vitis coignetiae) extracts depending on ethanol concentrations. J. Kor. Soc. Food Sci. Nutr. 36, 1491-1496. https://doi.org/10.3746/jkfn.2007.36.12.1491
- Jung, H. K., Kim, E. Y., Yae, H. S., Choi, S. J., Jung, J. Y. and Juhn, S. L. 2000. Cholesterol-lowering effect of lactic acid bacteria and fermented milks as probiotic functional foods. Food Ind. Nutr. 5, 29-35.
-
Jung, T. D., Shin, G. H., Kim, J. M., Choi, S. I., Lee, J. H., Lee, S. J., Heo, I. Y., Park, S. J., Oh, S. K., Woo, K. S., Lim, J. K. and Lee, O. H. 2016. Isoflavone,
${\beta}$ -glucan content and antioxidant activity of defatted soybean powder by bioconversion with Lentinula edodes. J. Food Hyg. Saf. 31, 386. https://doi.org/10.13103/JFHS.2016.31.5.386 - Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J. and Hoyt, J. E. 1997. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health. J. Altern. Complement. Med. 3, 7-12. https://doi.org/10.1089/acm.1997.3.7
- Keung, W. M. and Vallee, B. L. 1993. Daidzein a potent selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc. Natl. Acad. Sci. USA. 90, 1247-1251. https://doi.org/10.1073/pnas.90.4.1247
- Kim, B. H., Jang, J. O., Joa, J. H., Kim, J. A., Song, S. Y., Lim, C. K., Kim, C. H., Jung, Y. B., Seong, K. C., Kim, H. S. and Moon, D. G. 2017. A comparison of the microbial diversity in Korean and Chinese post-fermented teas. Microbiol. Biotechnol. Lett. 45, 71-80. https://doi.org/10.4014/mbl.1702.02006
- Kim, C. K. 2001. Ginseng sponins processing by using bioconversion technology. The Korean Ginseng Research and Industry 6, 3-13.
- Kim, E. J., Choi, J. Y., Yu, M. R., Kim, M. Y., Lee, S. H. and Lee, B. H. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Kor. J. Food Sci. Technol. 44, 337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
- Kim, H. Y., Hong, J. H., Kim, D. S., Kang, K. J., Han, S. B., Lee, E. J., Chung, H. W., Song, K. H., Sho, K. A., Kwack, S. J., Kim, S. S., Park, K. L., Lee, S. K., Kim, M. C., Kim, C. M. and Song, I. S. 2003. Isoflavone content and estrogen activity in arrowroot Puerariae Radix. Food Sci. Biotechnol. 12, 29-35.
- Kim, J. S., Lee, J. H., Surh, J., Kang, S. A. and Jang, K. H. 2016. Aglycone isoflavones and exopolysaccharides produced by Lactobacillus acidophilus in fermented soybean paste. Prev. Nutr. Food Sci. 21, 117-123. https://doi.org/10.3746/pnf.2016.21.2.117
- Kim, M. H. 2015. Biological activity of ethanol extracts from fermented Opuntia humifusa with 3 different mushroom mycelia. J. Kor. Soc. Food Sci. Nutr. 28, 620-627.
- Kim, S. I., Sim, K. H., Ju, S. Y. and Han, Y. S. 2009. A Study on antioxidative and hypoglycemic activities of Omija (Schizandra chinensis Baillon) extract under variable extract conditions. Kor. J. Food Nutr. 22, 41-47.
- Larson, R. A. 1988. The antioxidants of higher plants. Phytochemistry 27, 969-978. https://doi.org/10.1016/0031-9422(88)80254-1
- Lee, K. J., Gu, M. J., Roh, J. H., Jung, P., M. and Ma, J. Y. 2013. Quantitative analysis of bioconversion constituents of insampeadock-san using various fermented bacteria. Yakhak Hoeji 57, 167-172.
- Lee, M. Y., Yoo, M. S., Whang, Y. J., Jin, Y. J., Hong, M. H. and Pyo, Y. H. 2012. Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Kor. J. Food Sci. Technol. 44, 540-544. https://doi.org/10.9721/KJFST.2012.44.5.540
- Lee, W. H., Han, S. R., Yu, S. C. and Oh, T. J. 2018. Comparison of physiological activities of Flammulina velutipes according to solvent extractions. J. Kor. Soc. Food Sci. Nutr. 47, 83-89. https://doi.org/10.3746/jkfn.2018.47.1.083
- Lim, J. D., Cha, H. S., Choung, M. G., Choi, R. N., Choi, D. J. and Youn, A. R. 2004. Antioxidant activities of acidic ethanol extract and the anthocyanin rich fraction from Aronia melanocarpa. Kor. J. Food Cook Sci. 30, 573-578. https://doi.org/10.9724/kfcs.2014.30.5.573
- Linares, D. M., Gomez, C., Renes, E., Fresno, J. M., Tornadijo, M. E., Ross, R. P. and Stanton, C. 2017. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 8, 846. https://doi.org/10.3389/fmicb.2017.00846
- Ljungh, A. and Wadstrom, T. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7, 73-90.
- Marklund, S. and Marklund, G. 1974. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. FEBS J. 47, 469-474.
- Murota, K., Shimizu, S., Miyamoto, S., Izumi, T., Obata, A., Kikuchi, M. and Terao, J. 2002. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells:Comparison of isoflavonoids and flavonoids. J. Nutr. 132, 1956-1961. https://doi.org/10.1093/jn/132.7.1956
- Oh, J., Lee, K. S., Son, H. Y. and Kim, S. Y. 1990. Antioxidative components of Pueraria root. Kor. J. Food Sci. Technol. 22, 793-800.
- Osawa, T. 1994 Novel natural antioxidants for utilization in food and biological systems. Japan Scientific Societies, Tokyo, Japan.
- Oyaizu, M. 1986. Studies on product of browning reaction prepared from glucose amine. Jap. J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
- Park, Y. E., Kim, B. H., Yoon, Y. C., Kim, J. K., Lee, J. H., Kwon, G. S., Hwang, H. S. and Lee, J. B. 2018. Total polyphenol contents, flavonoid contents, and antioxidant activity of roasted-flaxseed extracts based on lactic-acid bacteria fermentation. J. Life Sci. 28, 547-554. https://doi.org/10.5352/JLS.2018.28.5.547
- Park, Y. E., Kwon, G. S., Kim, B. H. and Lee, J. B. 2019. Usefulness evaluation for anti-oxidative and whitening effects of the fermented Thistle (Cirsium japonicum) with Lactobacillus rhamnosus BHN-LAB 105. Asian J. Beauty Cosmetol. in press.
-
Poojary, M. M., Dellarosa, N., Roohinejad, S., Koubaa, M., Tylewicz, U., Gomez-Galindo, F., Saraiva, J. A., Rosa, M. D. and Barba, F. J. 2017. Influence of innovative processing on
${\gamma}$ -aminobutyric acid (GABA) contents in plant food materials. Compr. Rev. Food Sci. F. 16, 895-905. https://doi.org/10.1111/1541-4337.12285 - Rice Evans, C., Miller, N. and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
- Saez-Lara, M. J., Gomez-Llorente, C., Plaza-Diaz, J. and Gil, A. 2015. The role of probiotic lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials. Biomed Res. Int. 2015, 505878. https://doi.org/10.1155/2015/505878
- Saito, M., Sakagami, H. and Fujisawa, S. 2002. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticancer Res. 23, 4693-4701.
- Samak, G., Shenoy, R. P., Manjunatha, S. M. and Vinayak, K. S. 2009. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata. Food Chem. 115, 631-634. https://doi.org/10.1016/j.foodchem.2008.12.078
- Setchell, K. D. R. and Cassidy, A. 1999. Dietary isoflavones:Biological effects and relevance to human health. J. Nutr. 129, 758-767. https://doi.org/10.1093/jn/129.3.758S
- Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D'angelo, V. and Circosta, C. 2016. Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of cannabis sativa l. Phytother. Res. 30, 1298-1307. https://doi.org/10.1002/ptr.5623
- Song, H. S., Kim, H. K., Min, H. O., Choi, J. D. and Kim, Y. M. 2011. Changes in physicochemical and sensory properties of hizikia fusiforme water extract by fermentation of lactic acid bacteria. Kor. J. Fish Aquat. Sci. 44, 104-110. https://doi.org/10.5657/kfas.2011.44.2.104
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
- Tannock, G. W. 1997. Probiotic properties of lactic acid bacteria:plenty of scope for fundamental R&D. Trends Biotechnol. 15, 270-274. https://doi.org/10.1016/S0167-7799(97)01056-1
- Vrijheid, M., Casas, M., Gascon, M., Valvi, D. and Nieuwenhuijsen, M. 2016. Environmental pollutants and child health-A review of recent concerns. Int. J. Hyg. Envir. Heal. 219, 331-342. https://doi.org/10.1016/j.ijheh.2016.05.001
- Waltenberger, B., Halabalaki, M., Schwaiger, S., Adamopoulos, N., Allouche, N., Fiebich, B. L., Hermans, N., Jansen-Durr, P., Kesternich, V., Pieters, L., Schonbichler, S., Skaltsounis, A. L., Tran, H., Trougakos, I. P., Viljoen, A., Wolfender, J. L., Wolfrum, C., Xynos, N. and Stuppner, H. 2018. Novel natural products for healthy ageing from the medi terranean diet and food plants of other global sources-The MediHealth Project. Molecules 23, 1097. https://doi.org/10.3390/molecules23051097
- Xiaohai, W., C. S., G. and Tsao, G. T. 1998. Bioconversion of fumaric acid to succinic acid by reconbinant E. coli. Appl. Biochem. Biotechnol. 70, 919-928. https://doi.org/10.1007/BF02920202
- Yoon, Y. C., Kim, B. H., Kim, J. K., Lee, J. H., Park, Y. E., Kwon, G. S., Hwang, H. S. and Lee, J. B. 2018. Verification of biological activities and tyrosinase inhibition of ethanol extracts from Hemp Seed (Cannabis sativa L.) fermented with lactic acid bacteria. J. Life Sci. 28, 688-696. https://doi.org/10.5352/JLS.2018.28.6.688
- Yoshino, M. and Murakami, K. 1998. nteraction of iron with polyphenolic compounds: application to antioxidant characterization. Anal. Biochem. 257, 40-44. https://doi.org/10.1006/abio.1997.2522
- Yu, S. C. and Oh, T. J. 2016. Antioxidant activities and antimicrobial effects of extracts from Auricularia auricula-judae. J. Kor. Soc. Food Sci. Nutr. 45, 327-332. https://doi.org/10.3746/jkfn.2016.45.3.327
- Yuan, J. P., Wang, J. H. and Liu, X. 2007. Metabolism of dietary soy isoflavones to equol by human intestinal microflora - implications for health. Mol. Nutr. Food Res. 51, 765-781. https://doi.org/10.1002/mnfr.200600262
- Yun, Y. J., Lee, A., Nguyen, T. M. T., Park, J. T., Yun, S. M. and Kim, J. 2018. Bioconversion of onino extract to improve the bioavailablility of quercetin glycoconjugate. Korean J. Food Sci. Technol. 50, 391-399. https://doi.org/10.9721/KJFST.2018.50.4.391
- Zeng, C. Y., Zhang, L. Y., Zhou, Y. P. and Fan, L. L. 1982. Pharmacological studies on Pueraria radix. Clin. Med. J. 95, 145-150.
- Zhishen, J., Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2