Fig. 1. Design and delivery of gRNA.
Fig. 2. Gene editing in the B. mori genome.
Fig. 4. Relative gene expression of in BmBLOS mutants.
Fig. 3. Mutations of BmBLOS gene induced by Cas9/B4N gRNA injection.
Table 1. Primers used in this study
Table 2. Analysis of gRNA target sequences of the BmBLOS gene and potential off-target in the genome
Table 3. Embryonic gene editing induced by Cas9/gRNA complex injection targeting BmBLOS
참고문헌
- An, H. Y., Cha, J. Y., Park, K. R., Kim, Y. R. and Cho, Y. S. 2013. Improvement effect of fermented silkworm (Bombyx mori L.) powder against orptic acid-induced fatty liver in rats. J. Life Sci. 26, 789-795. https://doi.org/10.5352/JLS.2016.26.7.789
- Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. and Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712. https://doi.org/10.1126/science.1138140
- Basua, S., Aryana, A., Overcasha, J. M., Samuela, G. H., Andersona, M. A., Dahlemb, T. J., Mylesa, K. M. and Adelmana, Z. N. 2015. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc. Natl. Acad. Sci. USA. 112, 4038-4043. https://doi.org/10.1073/pnas.1502370112
- Bibikova, M., Golic, M., Golic, K. G. and Carroll, D. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169-1175. https://doi.org/10.1093/genetics/161.3.1169
- Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F. and Marraffini, L. A. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429-7437. https://doi.org/10.1093/nar/gkt520
- Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Boqdanovel, A. J. and Voytad, D. F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761. https://doi.org/10.1534/genetics.110.120717
- Doudna, J. A. and Charpentier, E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1078-1086.
- Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-287. https://doi.org/10.1038/nbt.2808
- Fujii, T., Daimon, T., Uchino, K., Banno, Y., Katsuma, S., Sezutsu, H., Tamura, T. and Shimada, T. 2010. Transgenic analysis if the BmBLOS2 gene that governs the translucency of the larval integument of the silkworm Bombyx mori. Insect Mol. Biol. 19, 659-667. https://doi.org/10.1111/j.1365-2583.2010.01020.x
- Harrison, M. H., Jenkins, B. V., O'Connor-Giles, K. M. and Wildonger, J. 2014. A CRISPR view of development. Genes Dev. 28, 1859-1872. https://doi.org/10.1101/gad.248252.114
- Ji, S. D., Kim, N. S., Lee, J. Y., Kim, M. J., Kweon, H. Y., Sung, G. B., Kang, P. D. and Kim, K. Y. 2015. Development of processing technology for edible mature silkworm. J. Seric. Entomol. Sci. 53, 38-43. https://doi.org/10.7852/jses.2015.53.1.38
- Joung, J. K. and Sander, J. D. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49-55. https://doi.org/10.1038/nrm3486
- Kim, S. W., Kang, M. U., Kang, S. W., Yun, E. Y., Choi, K. H., Kim, S. R., Park, S. W., Nho, S. K. and Goo, T. W. 2013. Modification of the commercial silkworm eggs adequate for BluemoonO silkworm transgenesis. J. Seric. Entomol. Sci. 51, 73-77. https://doi.org/10.7852/JSES.2013.51.1.73
- Kim, S. W., Yun, E. Y., Choi, K. H., Kim, S. R., Park, S. W., Kang, S. W., Kwon, O. Y. and Goo, T. W. 2012. Construction of fluorescent red silk using fibroin H-chain expression system. J. Seric. Entomol. Sci. 50, 87-92. https://doi.org/10.7852/jses.2012.50.2.87
- Kistler, K. E.,Vosshall, L. B. and Matthews, B. J. 2015. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11, 51-60. https://doi.org/10.1016/j.celrep.2015.03.009
- Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., Carte, J., Chen, W., Roark, N., Ranganathan, S., Ravinder, N. and Chesnut, J. D. 2015. Rapid and highly efficiency mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44-53. https://doi.org/10.1016/j.jbiotec.2015.04.024
- Naito, Y., Hino, K., Bono, H. and Ui-Tei, K. 2015. CRISPR direct: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120-1123 https://doi.org/10.1093/bioinformatics/btu743
- Taning, C. N. T., Eynde, B. V., Yu, N., Ma, S. and Smagghe, G. 2017. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 98, 245-257. https://doi.org/10.1016/j.jinsphys.2017.01.007
- Zeng, B., Zhan, S., Wang, Y., Huang, Y., Xu, J., Liu, Q., Li, Z., Huang, Y. and Tan, A. 2016. Expansion of CRISPR targeting site in Bombyx mori. Insect Biochem. Mol. Biol. 72, 31-40. https://doi.org/10.1016/j.ibmb.2016.03.006
- Zhang, Z., Aslam, A. F. M., Liu, X., Huang, Y. and Tan, A. 2015. Functional analysis of Bombyx Wet 1 during embryogenesis using the CRISPR/Cas9 system. J. Insect Physiol. 79, 73-79. https://doi.org/10.1016/j.jinsphys.2015.06.004
- Zhang, Z., Zhang, Y., Gao, F., Cheah, K. S., Tse, H. F. and Lian, Q. 2017. CRISPR/Cas9 genome-editing system in human stem cells: current status and future prospects. Mol. Ther. Nucleic Acids 15, 230-240.
- Zhao, Y., Dai, Z., Liang, Y., Yin, M., Ma, K., He, M., Ouyang, H. and Teng, C. B. 2014. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 4, 3943. https://doi.org/10.1038/srep03943
- Zhu, L., Mon, H., Xu, J., Lee, J. M. and Kusakabe, T. 2015. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci. Rep. 5, 18103. https://doi.org/10.1038/srep18103
- Xu, H. and O'Brochta, D. A. 2015. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc. Biol. Sci. 282, 20150487. https://doi.org/10.1098/rspb.2015.0487