DOI QR코드

DOI QR Code

Gene Expression Profiling by Ginsenoside Rb1 in Keratinocyte HaCaT Cells

피부각질세포 HaCaT에서 진세노사이드 Rb1에 의한 유전자 발현 양상

  • Lee, Dong Woo (Department of Biological Science and the Research Institute for Basic Sciences, Hoseo University) ;
  • Kim, Jung Min (Genoplan, Inc. & NAR Center, Inc.) ;
  • Bang, In Seok (Department of Biological Science and the Research Institute for Basic Sciences, Hoseo University)
  • 이동우 (호서대학교 생명과학과 및 기초과학연구소) ;
  • 김정민 (제노플랜코리아(주) 유전체분석팀) ;
  • 방인석 (호서대학교 생명과학과 및 기초과학연구소)
  • Received : 2019.02.26
  • Accepted : 2019.04.20
  • Published : 2019.05.30

Abstract

We investigated the gene expression patterns and the mechanisms of action of the apoptotic response by microarray analysis of human keratinocyte HaCaT cells treated with ginsenoside Rb1, a saponin of Panax ginseng C. A. Meyer. Genes related to apoptosis, the G2/M transition of the mitotic cell cycle, cell division, mitotic nuclear division, and intracellular protein transport were 2-fold up-regulated in HaCaT cells treated with the ginsenoside Rb1, whereas genes related to DNA repair, regeneration fission, and extracellular matrix organization were 2-fold down-regulated. Apoptosis signaling may be mediated by FAS and PLA2G4A, and pathway analysis indicated that STAT3 might be an upstream regulator of these genes. The activity of FAS and PLA2G4A was verified by qPCR, which showed that FAS was increased about 2-fold in HaCaT cells treated with $10{\mu}g/ml$ of ginsenoside Rb1 for 24 hr, PLA2G4A was increased about twice after 6 hours, and gene expression was increased more than 2-fold after 24 hr. Knockdown of STAT3 with siRNA decreased FAS expression and increased PLA2G4A expression but only FAS was passed from the upstream regulator STAT3. These results indicate that STAT3, which is an upstream regulator, induces apoptosis via FAS during treatment with ginsenoside Rb1.

인삼(Panax ginseng C. A. Meyer)의 사포닌 진세노사이드 Rb1이 처리된 인간 피부각질세포 HaCaT에서 microarray 분석 및 발현이 증가된 세포사멸 반응에 대한 작용기전을 연구하였다. HaCaT 세포에 진세노사이드 Rb1의 처리로 세포사멸, 유사분열 세포주기의 G2/M 전이, 세포분열, 핵분열, 그리고 단백질 수송 등의 작용기전에 관여하는 유전자들이 2 배 이상 발현이 증가된 것으로 나타났으며, DNA 수선, 감수 핵분열, 그리고 세포외기질 체계 등의 작용기전에 관여하는 유전자들은 2 배 이상 발현이 감소된 것으로 나타났다. 특히 세포사멸 신호전달은 FAS와 PLA2G4A를 경유하는 것으로 나타났으며, 이들 유전자의 상위 조절자로 STAT3가 예측되었다. 세포사멸 반응 경유 유전자 FAS와 PLA2G4A의 활성을 qPCR로 확인한 결과, FAS 유전자는 $10{\mu}g/ml$의 진세노사이드 Rb1를 24시간 동안 처리하였을 경우 약 2 배의 발현 증가와, PLA2G4A 유전자는 6시간 처리부터 약 2 배로 증가되어 24시간 동안 처리시 2 배 이상의 유전자 발현이 증가되었다. 한편 STAT3-siRNA를 이용한 knock-down 실험에서 FAS의 발현 감소와 PLA2G4A의 발현 증가로 상위 조절자 STAT3로부터 FAS 만을 경유하는 것을 알 수 있었다. 이상의 결과 진세노사이드 Rb1의 처리에 의해 상위 조절자인 STAT3는 FAS를 경유하여 세포사멸을 유도하는 것임을 알 수 있다.

Keywords

SMGHBM_2019_v29n5_514_f0001.png 이미지

Fig. 1. The chemical structures of ginsenoside Rb1.

SMGHBM_2019_v29n5_514_f0002.png 이미지

Fig. 2. Effects of ginsenoside Rb1 on cell viability in HaCaT cells.

SMGHBM_2019_v29n5_514_f0003.png 이미지

Fig. 3. Cytoprotective effects of ginsenoside Rb1 against H2O2-induced oxidative stress in HaCaT cells.

SMGHBM_2019_v29n5_514_f0004.png 이미지

Fig. 4. Gene ontology of gisenoside Rb1 by microarray analysis.

SMGHBM_2019_v29n5_514_f0005.png 이미지

Fig. 5. Gene expression profiles of the genes related to the apoptosis signaling by ginsenoside Rb1.

SMGHBM_2019_v29n5_514_f0006.png 이미지

Fig. 6. Signaling network of the genes related to the apoptosis signaling.

SMGHBM_2019_v29n5_514_f0007.png 이미지

Fig. 7. Effect of ginsenoside Rb1 on the gene expressions of FAS (A) and PLA2G4A (B) in HaCaT cells.

SMGHBM_2019_v29n5_514_f0008.png 이미지

Fig. 8. Effects of knock-down of STAT3 on expression of FAS and PLA2G4A.

Table 1. Primer sequences for qPCR

SMGHBM_2019_v29n5_514_t0001.png 이미지

Table 2. Gene lists in apoptosis signaling response by Rb1 in the HaCaT cells

SMGHBM_2019_v29n5_514_t0002.png 이미지

References

  1. Attele, A. S., Wu, J. A. and Yuan, C. S. 1999. Ginseng pharmacology:multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  2. Chim, C. S., Fung, T. K., Cheung, W. C., Liang, R. and Kwong, Y. L. 2004. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the JAK/STAT pathway. Blood 103, 4630-4635. https://doi.org/10.1182/blood-2003-06-2007
  3. Cho, W. J., Yoon, H. S., Kim, Y. H., Kim, J. M., Yoo, I. J., Han, M. D. and Bang, I. S. 2013. Cytoprotective effects and gene expression patterns observed based on the antioxidant activity of Lonicera japonica extract. J. Life Sci. 23, 989-997. https://doi.org/10.5352/JLS.2013.23.8.989
  4. Choi, E. O., Kwon, D. H., Hwang, H. J., Kim, K. J., Lee, D. H. and Choi, Y. H. 2018. Antioxidant and cytoprotective effects of socheongja and socheong 2, Korean black seed coat soybean varieties, against hydrogen peroxide-induced oxidative damage in HaCaT human skin keratinocytes. J. Life Sci. 28, 454-464. https://doi.org/10.5352/JLS.2018.28.4.454
  5. Choo, M. K., Sakurai. H., Kim. D. H. and Saiki, I. 2008. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappaB signaling in murine colon cancer cells. Oncol. Rep. 19, 595-600.
  6. Degterev, A., Boyce, M. and Yuan, J. 2003. A decade of caspases. Oncogene 22, 8543-8567. https://doi.org/10.1038/sj.onc.1207107
  7. Deng, G., Su, J. H., Ivins, K. J., Van Houten, B. and Cotman, C. W. 1999. Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp. Neurol. 159, 309-318. https://doi.org/10.1006/exnr.1999.7145
  8. Fung, C. K., Xi, N., Yang, R., Seiffert-Sinha, K. K., Lai, W. and Sinha, A. A. 2011. Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM). IEEE Trans. Nanobioscience 10, 9-15. https://doi.org/10.1109/TNB.2011.2113397
  9. Halliwell, B., Gutteridge, J. M. C. and Cross, C. E. 1992. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 119, 598-620.
  10. Hasegawa, H. 2004. Proof of the mysterious efficacy of ginseng:basic and clinical trials: metabolic activation of ginsenoside:deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95, 153-157. https://doi.org/10.1254/jphs.FMJ04001X4
  11. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407, 770-776. https://doi.org/10.1038/35037710
  12. Im, J. Y., Kim, B. K., Lee, J. Y., Park, S. H., Ban, H.S., Jung, K. E. and Won, M. 2018. DDIAS suppresses TRAIL-mediated apoptosis by inhibiting DISC formation and destabilizing caspase-8 in cancer cells. Oncogene 37, 1251-1262. https://doi.org/10.1038/s41388-017-0025-y
  13. Inghirami, G., Chiarle, R., Simmons, W. J., Piva, R., Schlessinger, K. and Levy, D. E. 2005. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 4, 1131-1133. https://doi.org/10.4161/cc.4.9.1985
  14. Kim, B. G., Choi, S. Y., Kim, M. R., Suh, H. J. and Park, H. J. 2010. Changes of ginsenosides in korean red ginseng (Panax ginseng) fermented by Lactobacillus plantarum M1. Process Biochem. 45, 1319-1324. https://doi.org/10.1016/j.procbio.2010.04.026
  15. Kim, G., Sumiyoshi, M., Sakanaka, M. and Kimura, Y. 2009. Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice. Eur. J. Pharmacol. 602, 148-156. https://doi.org/10.1016/j.ejphar.2008.11.021
  16. Kim, H., Suh, J. M., Hwang, E. S., Kim, D. W., Chung, H. K., Song, J. H., Hwang, J. H., Park, K. C., Ro, H. K., Jo, E. K., Chang, J. S., Lee, T. H., Lee, M. S., Kohn, L. D. and Shong, M. 2003. Thyrotropin-mediated repression of class II trans-activator expression in thyroid cells: involvement of STAT3 and suppressor of cytokine signaling. J. Immunol. 171, 616-627. https://doi.org/10.4049/jimmunol.171.2.616
  17. Kimura, Y., Sumiyoshi, M. and Sakanaka, M. 2012. Effects of ginsenoside Rb1 on skin changes. J. Biomed. Biotechnol. 2012, 1-11.
  18. Kramer, A., Green, J., Pollard, J. Jr. and Tugendreich, S. 2014. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523-530. https://doi.org/10.1093/bioinformatics/btt703
  19. Krammer, P. H., Arnold, R. and Lavrik, I. N. 2007. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532-542. https://doi.org/10.1038/nri2115
  20. Lee, C. H. and Kim, J. H. 2014. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 38, 161-166. https://doi.org/10.1016/j.jgr.2014.03.001
  21. Lee, J. O., Choi, E., Shin, K. K., Hong, Y. H., Kim, H. G., Jeong, D., Hossain, M. A., Kim, H. S., Yi, Y. S., Kim, D., Kim, E. and Cho, J. Y. 2019. Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway. J. Ginseng Res. 43, 154-160. https://doi.org/10.1016/j.jgr.2018.10.003
  22. Lee, Y. M., Yoon, H., Park, H. M., Song, B. C. and Yeum, K. J. 2017. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J. Ginseng Res. 41, 11311-119.
  23. Lu, J. M., Yao, Q. and Chen, C. 2009. Ginseng compounds:an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 7, 293-302. https://doi.org/10.2174/157016109788340767
  24. Mitchell, T. J. and John, S. 2005. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology 114, 301-312. https://doi.org/10.1111/j.1365-2567.2005.02091.x
  25. Namgoong, S., Lee, H., Han, S. K., Lee, H. W., Jeong, S. H. and Dhong, E. S. 2019. Effect of Panax ginseng extract on the activity of diabetic fibroblasts in vitro. Int. Wound J. 16, 737-745. https://doi.org/10.1111/iwj.13091
  26. Park, J. H., Lee, Y. H., Kang, K. S., Lee, S. K., Kim, S. Z., Park, J. Y., Kwak, E. K. and Sohn, Y. K. 2004. The effects of ginsenoside Rb1 on the apoptosis and the production of nitric oxide in Rat C6 glioma cells. Kor. J. Pathol. 38, 1-7.
  27. Park, S.E., Na, C. S., Yoo, S. A., Seo, S. H. and Son, H. S. 2017. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 41, 36-42. https://doi.org/10.1016/j.jgr.2015.12.008
  28. Park, Y. J., Park, E. S., Kim, M. S., Kim, T. Y., Lee, H. S., Lee, S., Jang, I. S., Shong, M., Park, D. J. and Cho, B. Y. 2002. Involvement of the protein kinase C pathway in thyrotropin-induced STAT3 activation in FRTL-5 thyroid cells. Mol. Cell Endocrinol. 194, 77-84. https://doi.org/10.1016/S0303-7207(02)00185-5
  29. Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P. and Yaffee, M. 1995. Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta. 1271, 67-74. https://doi.org/10.1016/0925-4439(95)00012-S
  30. Shibata, S. 2001. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Kor. Med. Sci. 16, 28-37. https://doi.org/10.3346/jkms.2001.16.S.S28
  31. Shin, J. E., Park, E. K., Kim, E. J., Hong, Y. H., Lee, K. T. and Kim, D. H. 2003. Cytotoxicity of compound K (IH-901) and ginsenoside Rh2, main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. J. Ginseng Res. 27, 129-134. https://doi.org/10.5142/JGR.2003.27.3.129
  32. Simmler, C., Antheaume, C. and Lobstein, A. 2010. Antioxidant biomarkers from vanda coerulea stems reduce irradiated HaCaT PGE-2 production as a result of COX-2 inhibition. PLoS One 5, 1-9.
  33. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J. and Saiki, I. 1998. An intestinal bacterial merabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 246, 725-730. https://doi.org/10.1006/bbrc.1998.8690
  34. Yayeh, T, Jung, K. H., Jeong, H. Y., Park, J. H., Song, Y. B., Kwak, Y. S., Kang, H. S., Cho, J. Y., Oh, J. W. and Kim, S. K., et al. 2012. Korean red ginseng saponin fraction down regulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J. Ginseng Res. 36, 263-269. https://doi.org/10.5142/jgr.2012.36.3.263
  35. Yoon, J. J., Jeong, J. W., Choi, E. O., Kim, M. J., Hwang-Bo, H., Kim, H. J., Hong, S. H., Park, C., Lee, D. H. and Choi, Y. H. 2017. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes. EXCLI J. 16, 426-438. https://doi.org/10.17179/excli2016-817
  36. Zhang, G., Xia, F., Zhang, Y., Zhang, X., Cao, Y., Wang, L., Liu, X., Zhao, G. and Shi, M. 2016. Ginsenoside Rd is efficacious against acute ischemic stroke by suppressing microglial proteasome-mediated inflammation. Mol. Neurobiol. 53, 2529-2540. https://doi.org/10.1007/s12035-015-9261-8