DOI QR코드

DOI QR Code

Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leaves

  • Ding, Zhuang (Institute of BioPharmaceutical Research, Liaocheng University) ;
  • Tao, Tao (Institute of BioPharmaceutical Research, Liaocheng University) ;
  • Wang, Lili (Institute of BioPharmaceutical Research, Liaocheng University) ;
  • Zhao, Yanna (Institute of BioPharmaceutical Research, Liaocheng University) ;
  • Huang, Huiming (School of Life Sciences, Liaocheng University) ;
  • Zhang, Demeng (State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co. Ltd.) ;
  • Liu, Min (Institute of BioPharmaceutical Research, Liaocheng University) ;
  • Wang, Zhengping (Institute of BioPharmaceutical Research, Liaocheng University) ;
  • Han, Jun (Institute of BioPharmaceutical Research, Liaocheng University)
  • Received : 2019.01.08
  • Accepted : 2019.04.19
  • Published : 2019.05.28

Abstract

Endophytic fungi are an important component of plant microbiota, and have the excellent capacity for producing a broad variety of bioactive metabolites. These bioactive metabolites not only affect the survival of the host plant, but also provide valuable lead compounds for novel drug discovery. In this study, forty-two endophytic filamentous fungi were isolated from Ficus elastica leaves, and further identified as seven individual taxa by ITS-rDNA sequencing. The antimicrobial activity of these endophytic fungi was evaluated against five pathogenic microorganisms. Two strains, Fes1711 (Penicillium funiculosum) and Fes1712 (Trichoderma harzianum), displayed broad-spectrum bioactivities. Our following study emphasizes the isolation, identification and bioactivity testing of chemical metabolites produced by T. harzianum Fes1712. Two new isocoumarin derivatives (1 and 2), together with three known compounds (3-5) were isolated, and their structures were elucidated using NMR and MS. Compounds 1 and 2 exhibited inhibitory activity against Escherichia coli. Our findings reveal that endophytic fungi from the rubber tree F. elastica leaves exhibit unique characteristics and are potential producers of novel natural bioactive products.

Keywords

References

  1. Gouda S, Das G, Sen SK, Shin HS, Patra JK. 2016. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7: 1538.
  2. Saikkonen K, Faeth SH, H elander M, Sullivan TJ. 1998. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 29: 319-343. https://doi.org/10.1146/annurev.ecolsys.29.1.319
  3. Rudgers JA, Fischer S, Clay K. 2010. Managing plant symbiosis: fungal endophyte genotype alters plant community composition. J. Appl. Ecol. 47: 468-477. https://doi.org/10.1111/j.1365-2664.2010.01788.x
  4. Rodriguez RJ, Woodward CJ, Redman RS. 2012. Fungal influence on plant tolerance to stress. pp. 155-163. In Southworth D, Biocomplexity of plant-fungal interactions, Wiley-Blackwell, Oxford.
  5. Kumar S, Kaushik N. 2013. Endophytic fungi isolated from oil seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8: e56202. https://doi.org/10.1371/journal.pone.0056202
  6. Soliman SSM, Trobacher CP, Tsao R, Greenwood JS, Raizada MN. 2013. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol. 13: 93. https://doi.org/10.1186/1471-2229-13-93
  7. Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214-216. https://doi.org/10.1126/science.8097061
  8. Subbulakshmi GK, Thalavaipandian A, Bagyalakshmi RV, Rajendran A. 2012. Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa Wall. and Thuja occidentalis L. Int. J. Adv. Life Sci. 4: 9-15.
  9. Debbab A, Aly AH, Proksch P. 2011. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers. 49: 1-12. https://doi.org/10.1007/s13225-011-0114-0
  10. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. 2011. Anticancer compounds derived from fungal endophytes:their importance and future challenges. Nat. Prod. Rep. 28:1208-1228. https://doi.org/10.1039/c1np00008j
  11. Maheshwari R. 2016. Fungi: experimental methods in biology. 2nd ed. CRC Press, New York.
  12. Siler DJ, Cornish K. 1993. A protein from Ficus elastica rubber particles is related to proteins from Hevea brasiliensis and Parthenium argentatum. Phytochemistry 32: 1097-1102. https://doi.org/10.1016/S0031-9422(00)95072-6
  13. Solis MJL, Yurkov A, Cruz TE, Unterseher M. 2015. Leafinhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol. Progress 14: 1019. https://doi.org/10.1007/s11557-014-1019-6
  14. Ding Z, Li L, Che Q, Li D, Gu Q, Zhu T. 2016. Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20: 425-435. https://doi.org/10.1007/s00792-016-0833-y
  15. Sharma N, Kushwaha M, Arora D, Jain S, Singamaneni V, Sharma S, et al. 2018. New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J. Appl. Microbiol. 125: 111-120. https://doi.org/10.1111/jam.13764
  16. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49: 201-241.
  17. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. 2018. Endophytic fungi - alternative sources of cytotoxic compounds: a review. Front. Pharmacol. 9: 309. https://doi.org/10.3389/fphar.2018.00309
  18. Lin ZL, Lu ZY, Zhu TJ, F ang YC, Gu QQ, Zhu WM. 2008. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem. Pharm. Bull. 56: 217-221. https://doi.org/10.1248/cpb.56.217
  19. Malhadas C, Malheiro R, Pereira JA, Pinho PG, Baptista P. 2017. Antimicrobial activity of endophytic fungi from olive tree leaves. World J. Microbiol. Biotechnol. 33: 46. https://doi.org/10.1007/s11274-017-2216-7
  20. Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7: 89-123. https://doi.org/10.1007/s11101-006-9032-2
  21. Ding G, Wang H, Li L, Song B, Chen H, Zhang H, et al. 2014. Trichodermone, a Spiro-cytochalasan with a Tetracyclic Nucleus (7/5/6/5) Skeleton from the Plant Endophytic Fungus Trichoderma gamsii. J. Nat. Prod. 77: 164-167. https://doi.org/10.1021/np4007487
  22. Zhou P, Wu Z, Tan D, Yang J, Zhou Q, Zeng F, et al. 2017. Atrichodermones A-C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 123: 18-22. https://doi.org/10.1016/j.fitote.2017.09.012
  23. Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, et al. 2017. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv. 7: 51335-51342. https://doi.org/10.1039/C7RA11122C
  24. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43:143-148. https://doi.org/10.1111/j.1472-765X.2006.01939.x
  25. Liu K, Yang YB, Miao CP, Zheng YK, Chen JL, Chen YW, et al. 2016. Koningiopisins A-H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta. Med. 82: 371-376. https://doi.org/10.1055/s-0035-1558228
  26. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y. 2013. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 97: 9365-9375. https://doi.org/10.1007/s00253-013-5163-8
  27. Leylaie S, Zafari D. 2018. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Front. Microbiol. 9: 1484. https://doi.org/10.3389/fmicb.2018.01484
  28. Hill RA. 1986. Naturally occurring isocoumarins. Prog. Chem. Org. Nat. Prod. 49: 1-78.
  29. Engelmeier D, Hadacek F, Hofer O, Lutz-Kutschera G, Nagl M, Wurz G, et al. 2014. Antifungal 3-Butylisocoumarins from Asteraceae-Anthemideae. J. Nat. Prod. 67: 19-25. https://doi.org/10.1021/np0301339
  30. Thongbai B, Surup F, Mohr K, Kuhnert E, Hyde KD, Stadler M. 2013. Gymnopalynes A and B, chloropropynyl-isocoumarin antibiotics from cultures of the basidiomycete Gymnopus sp. J. Nat. Prod. 76: 2141-2144. https://doi.org/10.1021/np400609f
  31. Kornsakulkarn J, Thongpanchang C, Lapanun S, Srichomthong K. 2009. Isocoumarin glucosides from the scale insect fungus Torrubiella tenuis BCC 12732. J. Nat. Prod. 72: 1341-1343. https://doi.org/10.1021/np900082h
  32. Krupke OA, Castle AJ, Rinker DL. 2003. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol. Res. 107: 1467-1475. https://doi.org/10.1017/S0953756203008621
  33. Jeerapong C, Phupong W, Bangrak P, Intana W, Tuchinda P. 2015. Trichoharzianol, a new antifungal from Trichoderma harzianum F031. J. Agric. Food. Chem. 63: 3704-3708. https://doi.org/10.1021/acs.jafc.5b01258
  34. Qin XY, Yang KL, Wang CY, Shao CL. 2014. Secondary metabolites of the zoanthid-derived fungus Trichoderma sp. TA26-28 collected from the south China sea. Chem. Nat. Compd. 50: 961-964. https://doi.org/10.1007/s10600-014-1134-2
  35. Liang XR, Miao FP, Song YP, Guo ZY, Ji NY. 2016. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27. Nat. Prod. Res. 30: 1605-1610. https://doi.org/10.1080/14786419.2015.1126264
  36. Wang L, Zhou HB, Frisvad JC, Samson RA. 2004. Penicillium persicinum, a new griseofulvin, chrysogine and roquefortine C producing species from Qinghai province, China. Antonie Van Leeuwenhoek 86: 173-179. https://doi.org/10.1023/B:ANTO.0000036140.86059.51
  37. Yang JX, Qiu SX, S he ZG, Lin YC. 2013. A new xanthone derivative from the marine fungus Phomopsis sp. (No. SK7RN3G1). Chem. Nat. Compd. 49: 31-33. https://doi.org/10.1007/s10600-013-0498-z
  38. Ango YP, Kapche GDWF, Kuete V, Mapitse R, Yeboah SO, Ngadjui BT. 2016. Three new derivatives and others constituents from the roots and twigs of Trilepisium madagascariense DC. Helv. Chim. Acta 99: 642-649. https://doi.org/10.1002/hlca.201600073
  39. Fru CG, Sandjo LP, Kuete V, Liermann JC, Schollmeyer D, Yeboah SO, et al. 2013. Omphalocarpoidone, a new lanostane-type furano-spiro-${\gamma}$-lactone from the wood of Tridesmostemon omphalocarpoides Engl. (Sapotaceae). Phytochem. Lett. 6: 676-680. https://doi.org/10.1016/j.phytol.2013.08.017
  40. Pettit GR, Zhang Q, Pinilla V, Herald DL, Doubek DL, Duke JA. 2004. Isolation and structure of gustastatin from the Brazilian nut tree Gustavia hexapetala. J. Nat. Prod. 67: 983-985. https://doi.org/10.1021/np030509i
  41. Wansi JD, Wandji J, Waffo AFK, Ngeufa HE, Ndom JC, Fotso S, et al. 2006. Alkaloids from Oriciopsis glaberrima Engl. (Rutaceae). Phytochemistry 67: 475-480. https://doi.org/10.1016/j.phytochem.2005.09.031

Cited by

  1. Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities vol.25, pp.2, 2020, https://doi.org/10.3390/molecules25020395
  2. Overexpression of Global Regulator Talae1 Leads to the Discovery of New Antifungal Polyketides From Endophytic Fungus Trichoderma afroharzianum vol.11, 2019, https://doi.org/10.3389/fmicb.2020.622785
  3. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2019, https://doi.org/10.1007/s13205-020-2081-1
  4. Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Clu vol.25, pp.16, 2019, https://doi.org/10.3390/molecules25163657
  5. Biological Activities of Some New Secondary Metabolites Isolated from Endophytic Fungi: A Review Study vol.22, pp.2, 2021, https://doi.org/10.3390/ijms22020959
  6. Chemical Compounds From The Antibacterial Active Fraction Of Cordyline fruticosa (L) vol.709, pp.1, 2019, https://doi.org/10.1088/1755-1315/709/1/012048
  7. Endophytic Mycoflora: Antibacterial Secondary Metabolites and Their Therapeutic Potential vol.7, pp.4, 2021, https://doi.org/10.1007/s40495-021-00261-w
  8. Diversity and chemical fingerprinting of endo-metabolomes from endophytes associated with Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang possessing antibacterial activity against multidrug resistan vol.14, pp.12, 2019, https://doi.org/10.1016/j.jiph.2021.10.019