References
- Seal DV. 2003. Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye 17: 893-905. https://doi.org/10.1038/sj.eye.6700563
- Marciano-Cabral F, Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16: 273-307. https://doi.org/10.1128/CMR.16.2.273-307.2003
- Illingworth CD, Cook SD, Karabatsas CH, Easty DL. 1995. Acanthamoeba keratitis: risk factors and outcome. Br. J. Ophthalmol. 79: 1078-1082. https://doi.org/10.1136/bjo.79.12.1078
- Visvesvara GS, Moura H, Schuster FL. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immun. Med. Microbiol. 50: 1-26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
- Khan NA. 2006. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol. Rev. 30: 564-595. https://doi.org/10.1111/j.1574-6976.2006.00023.x
- Lorenzo-Morales J, Khan NA, Walochnik J. 2015. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 2015: 22: 10. https://doi.org/10.1051/parasite/2015010
- Coulon C, Collignon A, McDonnell G, Thomas V. 2010. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J. Clin. Microbiol. 48: 2689-2697. https://doi.org/10.1128/JCM.00309-10
- Ortilles A, Belloc J, Rubio E, Fernandez MT, Benito M, Cristobal JA, et al. 2017. In-vitro development of an effective treatment for Acanthamoeba keratitis. Int. J. Antimicrob. Agents 50: 325-333. https://doi.org/10.1016/j.ijantimicag.2017.03.033
- Huh AJ, Kwon YJ. 2011. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156: 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002
- Borase HP, Patil CD, Sauter IP, Rott MB, Patil SV. 2013. Amoebicidal activity of phytosynthesized silver nanoparticles and their in vitro cytotoxicity to human cells. FEMS Microbiol. Lett. 345: 127-131. https://doi.org/10.1111/1574-6968.12195
-
Imran M, Muazzam AG, Habib A, Matin A. 2016. Synthesis, characterization and amoebicidal potential of locally synthesized
$TiO_2$ nanoparticles against pathogenic Acanthamoeba trophozoites in vitro. J. Photochem. Photobiol. B: Biol. 159: 125-132. https://doi.org/10.1016/j.jphotobiol.2016.03.014 - Willcox MD, Hume EB, Vijay AK, Petcavich R. 2010. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. J. Optometry 3: 143-148. https://doi.org/10.1016/S1888-4296(10)70020-0
- Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA. 2016. Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine. Antimicrob. Agents Chemother. 60:1283-1288. https://doi.org/10.1128/AAC.01123-15
- Anwar A, Siddiqui R, Shah MR, Khan NA. 2019. Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and amphotericin B. J. Microbiol. Biotechnol. 29: 171-177. https://doi.org/10.4014/jmb.1805.05028
- Anwar A, Khan NA, Siddiqui R, 2018. Combating Acanthamoeba spp. cysts: what are the options? Parasit. Vectors 11: 26. https://doi.org/10.1186/s13071-017-2572-z
- Dudley R, Jarroll EL, Khan NA. 2009. Carbohydrate analysis of Acanthamoeba castellanii. Exp. Parasitol. 122: 338-343. https://doi.org/10.1016/j.exppara.2009.04.009
- Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E, De Pablos LM, Profotova B, Nohynkova E, et al. 2008. Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryot. Cell. 7: 509-517. https://doi.org/10.1128/EC.00316-07
- Abjani F, Khan NA, Yousuf FA, Siddiqui R. 2016. Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts. Cont. Lens Anterior Eye 39: 239-243. https://doi.org/10.1016/j.clae.2015.11.004
- Sissons J, Alsam S, Stins M, Rivas AO, Morales JL, Faull J, et al. 2006. Use of in vitro assays to determine effects of human serum on biological characteristics of Acanthamoeba castellanii. J. Clin. Microbiol. 44: 2595-2600. https://doi.org/10.1128/JCM.00144-06
- Anwar A, Siddiqui R, Hussain MA, Ahmed D, Shah MR, Khan NA. 2018. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol. Res. 117: 265-271. https://doi.org/10.1007/s00436-017-5701-x
- Lakhundi S, Khan NA, Siddiqui R. 2014. Inefficacy of marketed contact lens disinfection solutions against keratitis-causing Acanthamoeba castellanii belonging to the T4 genotype. Exp. Parasitol. 141: 122-128. https://doi.org/10.1016/j.exppara.2014.03.018
- Sissons J, Kim KS, Stins M, Jayasekera S, Alsam S, Khan NA. 2005. Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism. Infect. Immun. 73: 2704-2708. https://doi.org/10.1128/IAI.73.5.2704-2708.2005
- Anwar A, Siddiqui R, Shah MR, Khan NA. 2018. Gold nanoparticle-conjugated cinnamic acid exhibits antiacanthamoebic and antibacterial properties. Antimicrob. Agents Chemother. 62: e00630-18.
- Masri A, Anwar A, Ahmed D, Siddiqui R, Shah MR, Khan N. 2018. Silver nanoparticle conjugation enhanced antibacterial efficacy of clinically approved drugs Cephradine and Vildagliptin. Antibiotics 7: 100. https://doi.org/10.3390/antibiotics7040100
- Debnath A, Tunac JB, Silva-Olivares A, Galindo-Gomez S, Shibayama M, McKerrow JH. 2014. In vitro efficacy of corifungin against Acanthamoeba castellanii trophozoites and cysts. Antimicrob. Agents Chemother. 58: 1523-1528. https://doi.org/10.1128/AAC.02254-13
- Campbell RK. 1998. Glimepiride: role of a new sulfonylurea in the treatment of type 2 diabetes mellitus. Ann. Pharmacother. 32: 1044-1052. https://doi.org/10.1345/aph.17360
- Muller G. 2005. The mode of action of the antidiabetic drug glimepiride-beyond insulin secretion. Immunol. Endocr. Metab. Agents Med. Chem. 5: 499-518. https://doi.org/10.2174/156801305774962123
- Abd El-Wahed M, El-Megharbel S, El-Sayed M, Zahran Y, Refat M. 2013. Synthesis of several new lanthanide Glimepiride complexes for evaluation of microbial activity. Russ. J. Gen. Chem. 83: 2438-2446. https://doi.org/10.1134/S1070363213120402
- Ahren B, Schweizer A, Dejager S, Villhauer EB, Dunning BE, Foley JE. 2011. Mechanisms of action of the dipeptidyl peptidase-4 inhibitor vildagliptin in humans. Diabetes Obes. Metab. 13: 775-783. https://doi.org/10.1111/j.1463-1326.2011.01414.x
- Al-Abdullah E, Al-Tuwaijri H, Hassan H, Al-Alshaikh M, Habib E, El-Emam A. 2015. Synthesis, antimicrobial and hypoglycemic activities of novel N-(1-adamantyl) carbothioamide derivatives. Molecules 20: 8125-8143. https://doi.org/10.3390/molecules20058125
- Waghulde M, Naik J. 2017. Comparative study of encapsulated vildagliptin microparticles produced by spray drying and solvent evaporation technique. Drying Technol. 35: 1644-1654. https://doi.org/10.1080/07373937.2016.1273230
- Baig MMFA, Khan S, Naeem MA, Khan GJ, Ansari MT. 2018. Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed. Pharmacother. 97:1250-1258. https://doi.org/10.1016/j.biopha.2017.11.059
- Malaisse WJ. 1999. Repaglinide, a new oral antidiabetic agent: a review of recent preclinical studies. Eur. J. Clin. Invest. 29: 21-29. https://doi.org/10.1046/j.1365-2362.1999.00001.x
- Baig AM, Iqbal J, Khan NA. 2013. In vitro efficacies of clinically available drugs against growth and viability of an Acanthamoeba castellanii keratitis isolate belonging to the T4 genotype. Antimicrob. Agents Chemother. 57: 3561-3567. https://doi.org/10.1128/AAC.00299-13
- Baig AM, Zuberi H, Khan NA. 2014. Recommendations for the management of Acanthamoeba keratitis. J. Med. Microbiol. 63: 770-771. https://doi.org/10.1099/jmm.0.069237-0
- Kumari A, Yadav SK, Yadav SC. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B: Biointerfaces 75: 1-8. https://doi.org/10.1016/j.colsurfb.2009.09.001
- De las Heras Alarcon C, Pennadam S, Alexander C. 2005. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 34: 276-285. https://doi.org/10.1039/B406727D
- Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloids Interface Sci. 275: 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
Cited by
- Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis vol.9, pp.5, 2019, https://doi.org/10.3390/pathogens9050350
- The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders vol.9, 2019, https://doi.org/10.3389/fbioe.2021.629832