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ABSTRACT

Autophagy is a homeostatic mechanism that discards not only invading pathogens but also 
damaged organelles and denatured proteins via lysosomal degradation. Increasing evidence 
suggests a role for autophagy in inflammatory diseases, including infectious diseases, Crohn's 
disease, cystic fibrosis, and pulmonary hypertension. These studies suggest that modulating 
autophagy could be a novel therapeutic option for inflammatory diseases. Eosinophils are a 
major type of inflammatory cell that aggravates airway inflammatory diseases, particularly 
corticosteroid-resistant inflammation. The eosinophil count is a useful tool for assessing 
which patients may benefit from inhaled corticosteroid therapy. Recent studies demonstrate 
that autophagy plays a role in eosinophilic airway inflammatory diseases by promoting airway 
remodeling and loss of function. Genetic variant in the autophagy gene ATG5 is associated 
with asthma pathogenesis, and autophagy regulates apoptotic pathways in epithelial cells in 
individuals with chronic obstructive pulmonary disease. Moreover, autophagy dysfunction 
leads to severe inflammation, especially eosinophilic inflammation, in chronic rhinosinusitis. 
However, the mechanism underlying autophagy-mediated regulation of eosinophilic airway 
inflammation remains unclear. The aim of this review is to provide a general overview of the 
role of autophagy in eosinophilic airway inflammation. We also suggest that autophagy may be 
a new therapeutic target for airway inflammation, including that mediated by eosinophils.
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INTRODUCTION

Autophagy is an essential process that maintains cellular homeostasis and cell function 
by delivering cytosolic constituents, including organelles, denatured proteins, or invading 
pathogens, to lysosomes for degradation and amino acid recycling (1-3). Through autophagy, cells 
eliminate damaged or harmful components, thereby ensuring survival after exposure to stressors 
such as hypoxia, ROS, DNA damage, aggregated proteins, damaged organelles, or intracellular 
pathogens (4). Aberrant regulation of autophagy can result in cancer (5), neurodegenerative 
disease (6), and myopathies (7). Generally, autophagy is categorized into 3 different types: 
macroautophagy, chaperone-mediated autophagy, and microautophagy (8). Usually, 
macroautophagy is regarded as “autophagy”; we also referred it as autophagy in this review.
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Autophagy is a dynamic process associated with the formation of autophagosomes, which are 
double-membrane cytoplasmic vesicles that engulf cellular components. The core proteins 
involved in autophagosome formation are autophagy-related genes (ATG), which comprise 4 
sub-groups: 1) the ATG1/UNC-51-like kinase complex, which regulates initiation of autophagy; 
2) the ubiquitin-like protein (i.e., ATG12 and ATG8/microtubule-associated protein 1 light 
chain 3 [LC3] conjugation system), which assists elongation of the autophagic membrane; 3) 
the class III PI3K/vacuolar protein sorting 34 complex I, which participates in the early stages of 
autophagosome formation; and 4) 2 transmembrane proteins (i.e., ATG9/mammalian Atg9 and 
vacuole membrane protein 1), which may contribute to the delivery process via 2 major steps: 
induction of autophagosomes and fusion of autophagosomes with lysosomes (9,10).

Autophagy regulates immunity by eliminating invading pathogens, regulating recognition 
of innate pathogens, playing roles in Ag presentation via MHC class II molecules, and 
controlling B- and T-cell development (11). T-cells lacking Atg5, Atg7, Atg3, or Beclin-1 showed 
impaired proliferation and increased cell death (12). Furthermore, autophagy dysfunction is 
related to various inflammatory diseases, including inflammatory bowel disease (13), asthma 
(14), and chronic rhinosinusitis (CRS) (15-17). For example, formation of double-membrane 
autophagosomes in fibroblasts from severe asthmatic patients has been observed by electron 
microscopy (18,19), and genetic variants of the autophagy gene Atg5 are associated with 
promotion of airway remodeling and loss of lung function in childhood asthma (20).

Eosinophils are a major type of inflammatory cell that play an important role in airway 
inflammatory diseases, including asthma (21-23). Among the many proinflammatory molecules, 
IL-5 is involved in eosinophil-mediated inflammation. IL-5 promotes the differentiation, survival, 
trafficking, activation, and effector functions of eosinophils (22). Migration of eosinophils, 
especially to the lungs, is regulated by chemokines such as CCL5 (regulated on activation, normal 
T cell expressed and secreted [RANTES]), CCL7 (MCP3), CCL11 (eotaxin 1), CCL13 (MCP-
4), CCL15, CCL24, and CCL26, which bind to CCR3 (23,24). Eosinophils with inflammatory 
lesions in the lungs produce and release a variety of proinflammatory mediators, including 
basic proteins (major basic protein, eosinophil cationic protein [ECP], eosinophil peroxidase, 
eosinophil-derived neurotoxin), cytokines (IL-2, IL-3, IL-4, IL-5, IL-10, IL-12, IL-13, IL-16, and 
IL-25), chemokines (CCL5, CCL11, and CCL13), growth factors (TNF and TGF-α/β) (23,25). These 
proteins contribute to sustained inflammation (26) and tissue damage (23,25). For example, 
TGF-β produced by eosinophils in asthma patients is implicated in tissue remodeling through 
fibroblast proliferation and increased production of collagen and glycosaminoglycans (27,28).

Although evidence suggests that autophagy and eosinophils play important roles in 
immune responses and airway inflammation, few studies have examined the association 
between autophagy and eosinophils in inflammatory diseases. Here, we focus on the role of 
autophagy in eosinophilic airway inflammation, and suggest modulation of autophagy as a 
promising therapeutic approach to treat eosinophilic inflammatory diseases.

ROLE OF AUTOPHAGY IN AIRWAY INFLAMMATION 
DISEASES
Asthma
Asthma is a chronic airway disease characterized by airway hyperresponsiveness (AHR) and 
inflammation caused by molecular and cellular responses (29). Various types of inflammatory 
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cell are involved in the pathogenesis of asthma, including dendritic cells, mast cells, eosinophils 
and lymphocytes (30). Asthma is typically associated with an imbalance between Th1 and 
Th2 pathways; over-driven Th2-mediated inflammation leads to airway inflammation and 
asthma (31). In such situation, eosinophils play important roles in augmenting AHR, mucus 
production, and airway remodeling in allergic asthma by producing IL-13 and leukotrienes from 
eosinophil lipid bodies (23,32). Blood eosinophil counts correlate with the severity of allergic 
asthma (33), and electron microscopy reveals large numbers of eosinophils in the bronchial 
mucosa of patients with severe allergic asthma (32). Accordingly, the current focus of asthma 
treatment is the use of anti-inflammatory drugs such as inhaled corticosteroids. However, these 
drugs often failed to control asthma in some patients (34). Recent studies suggest that asthma 
pathogenesis is largely heterogeneous and complex, which is not simply driven by allergen-
specific Th2 lymphocytes as expected in allergic asthma. Some patients were characterized by 
the upregulation of IFN-γ, IL-17, and neutrophils in their lungs, in which airway neutrophilia 
correlated with asthma severity (35-38). Furthermore, consistent with the role of IL-17 in 
neutrophil recruitment, Th17 cells promoted neutrophilic inflammation, and contributed 
to the development of AHR in concert with Th2 cells in asthma animal models (39). Thus, a 
novel therapeutic target for treating diverse types of asthma, including eosinophilic asthma, is 
needed. Recent studies suggest that autophagy is a promising candidate.

Poon et al. (20) showed that a single-nucleotide polymorphism (SNP) rs12212740 G>A of Atg5 
correlated significantly with a reduction in pre-bronchodilator forced expiratory volume-1 
s (FEV1) in asthmatic patients (Table 1). They also used electron microscopy to show that 
fibroblasts and epithelial cells in bronchial biopsy tissue from asthmatic patients harbored 
more double-membrane autophagosomes than tissue from a healthy subject (20). Martin 
and colleagues (18) showed that SNPs of Atg5 and Atg7, and 2 SNP variants (rs12201458 and 
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Table 1. Autophagy and its impact on chronic airway inflammatory diseases
Disease Species Autophagy modulation Disease phenotype affected Autophagy role Reference
Asthma Human SNPs of ATG5 Reduced FEV1 Protective Poon et al. (20)

Associated with severe adult asthma
Human SNPs of ATG5 and ATG7 Associated with childhood asthma Protective Martin et al. (18)
Human Baf-A1, 3-MA Reduced fibrotic effect of TGF-β1 Detrimental Ghavami et al. (42)

ATG7 knockdown in hATMyofb cells
Human CQ in ASM cell Reduced airway remodeling markers including 

collagen-1 and phspho-SMAD2/3
Detrimental McAlinden et al. (43)

Mouse 3-MA (intraperitoneal) Decreased IL-5 level Detrimental Liu et al. (40)
Atg5 knockdown (intranasal) AHR improved

Decreased eosinophil count
Mouse CD11c-specific deficiency of Atg5 Th17 polarization Protective Suzuki et al. (41)

Severe neutrophilic asthma
Mouse ATG5 deficiency in fibroblasts Reduced fibrotic effect of TGF-β1 Detrimental Ghavami et al. (42)
Mouse CQ (intranasal) Decreased expression of Beclin-1 and Atg5 Detrimental McAlinden et al. (43)

COPD Human Dysfunction of lung epithelium Apoptosis activation Protective Chen et al. (52)
ROS activation Kim et al. (53)
Emphysema Chen et al. (54)

Human Beclin-1 or LC3B knockdown Apoptosis inactivation Detrimental Chen et al. (52)
Inhibition of autophagosome formation Kim et al. (53)

Human Beclin-1, Atg5, or Atg7 knockdown Prevents ROS generation Detrimental Chen et al. (54)
CRS Human Reduced LC3 in NP-derived fibroblast Increase NPs Protective Chen et al. (15)

Human Reduction of LC3 in NP-derived fibroblasts Increased NPs Protective Wang et al. (16)
Increased COX-2 expression

Mouse Myeloid cell-specific deficiency of Atg7 Increased eosinophil infiltration Protective Choi et al. (17)
Increased H-PGDS expression
Increased IL-1β expression by macrophages

H-PGDS, hematopoietic prostaglandin D2 synthase.
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rs510432) of Atg5 are associated with childhood asthma (Table 1). These findings were tested 
in a murine model of asthma (Table 1) (40,41). Inhibition of autophagy by intraperitoneal 
injection of 3-methyladenine (3-MA) and intranasal knockdown of Atg5 led to a marked 
improvement in AHR, the number of infiltrating eosinophils, IL-5 levels in bronchoalveolar 
lavage fluid, and histological inflammatory features (40). However, Suzuki et al. (41) showed 
that deficiency of CD11c-specific autophagy promotes neutrophilic airway inflammation in 
a murine asthma model. They found that impaired autophagy induced Th17 polarization, 
resulting in refractory asthma (41). Although they demonstrated a role for autophagy in 
neutrophilic airway inflammation, but not eosinophilic inflammation, the results suggest 
that autophagy plays an important and diverse role in asthma.

In addition, recent studies demonstrated that autophagy plays a crucial role in airway 
remodeling in airway smooth muscle (ASM) cells (Table 1). Ghavami et al. (42) showed 
that autophagy is a regulator of fibrogenesis induced by TGF-β1 in primary human atrial 
myofibroblasts (hATMyofbs). TGF-β1 promoted collagen-1 and fibronectin synthesis in 
hATMyofbs, which correlated with autophagic activation in these cells. Autophagy inhibition 
by ATG5 deficiency or treatment with bafilomycin-A1 (Baf-A1) and 3-MA decreased the 
fibrotic effect of TGF-β1 (42). McAlinden et al. (43) investigated the correlation between 
autophagy activation and asthma airway remodeling; human asthmatic tissues showed 
thickened epithelium, greater lamina propria depth, and increase in ASM bundles with 
higher expression of Beclin1 and ATG5 along with reduced p62 compared with non-asthmatic 
controls. They also showed that TGF-β1 induces upregulation of airway remodeling markers, 
collagen-1 and SMAD2/3 phosphorylation (pro-fibrotic signaling) along with the increased 
expression of Beclin-1 and LC3B-II (a marker of autophagosome formation) in ASM cells, 
which was reversed by an autophagy inhibitor, chloroquine (CQ). CQ also prevented 
accumulation of collagen in the lung of murine asthma models (43).

Furthermore, autophagy is a critical mediator of asthma exacerbations due to viral infection 
as well as allergic asthma (14). Viral infection is associated with exacerbation of acute 
asthma. Rhinovirus, severe respiratory syncytial virus, influenza viruses, coronaviruses, 
and adenoviruses are often detected in the airways of asthma patients (14). Treatment with 
Baf-A1 inhibited vacuolar-type H+-ATPase-mediated degradation of sequestered material 
and blocked autophagy flux by interfering with late-stage autophagosome-lysosome fusion 
in lung epithelial cells, resulting in growth inhibition of influenza A viruses (44). An 
experimental model based on mouse hepatitis virus (MHV), a prototype coronavirus used 
in replication and function studies, revealed that autophagy is required for viral replication, 
particularly for the formation of double membrane vesicle-bound MHC replication complexes 
(45). Further study revealed that a coronavirus non-structural protein 6 expressed by the 
MHV and severe acute respiratory syndrome coronavirus activates autophagy by generating 
autophagosomes independently of starvation (14,46). Thus, given its significant impact on 
asthma pathogenesis, further studies are needed to investigate the role of autophagy in the 
context of different cell types and to establish a therapeutic strategy for its regulation.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD)

COPD, a major global health epidemic, is associated with chronic inflammation of the airways 
and lung parenchyma (47,48). The main symptoms are shortness of breath, chronic cough, 
and excessive production of sputum. Chronic exposure of the airways to environmental 
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pollution is a main cause of COPD; indeed, approximately 15% of smokers suffer from this 
disease (49). COPD differs from asthma in that the main characteristic is irreversible airflow 
obstruction (49,50). The physiological abnormalities that characterize COPD are emphysema 
and obliteration of small airways (50). Although emphysema can occur independently of small 
airway narrowing, and vice versa, these 2 pathologies usually coexist in COPD (50). Narrowing 
of the small airways is caused by inflammation, increased airway muscle mass and fibrosis in 
the airway wall, and accumulation of inflammatory mucus exudates in the lumen (50).

Although the major inflammatory cells involved in COPD are CD8+ T cells, neutrophils and 
macrophages, some patients have eosinophil involvement (similar to that in asthma) (47). 
As mentioned before, eosinophils migrate in response to cytokines (IL-5 in particular) and 
specific chemokines (such as eotaxin I and RANTES). Exacerbation of COPD is triggered 
by persistent inflammation, which is itself caused by eosinophil-derived proinflammatory 
mediators such as basic proteins, cytokines, and growth factors (51).

Recent studies demonstrate an association between autophagy and COPD (Table 1) (52-
54). Chen et al. (52) showed that expression of LC3B-II, ATG4, ATG5, ATG12, and ATG7 
is higher in individuals with COPD than in those without, and that treatment of primary 
human bronchial epithelial cells with aqueous cigarette-smoke (CS) extract induces LC3B-
II. They also demonstrated a regulatory role for LC3B during epithelial cell apoptosis in a 
CS-induced lung cell injury model (52,53). Apoptosis is implicated in the pathogenesis of 
COPD. Treatment of epithelial cells with CS extract initiates the extrinsic apoptosis pathway, 
which involves assembly of the Fas-dependent death-inducing signaling complex (DISC) and 
activation of caspase-8; it also induced expression and conversion of the autophagic regulator 
LC3B, increased autophagosome formation, and increased caspase-3 activation. siRNA-
mediated knockdown of autophagic proteins Beclin-1 or LC3B in epithelial cells inhibits 
assembly of the Fas-dependent DISC (52,53). Moreover, apoptotic indices and emphysema 
development were reduced markedly in LC3B knock-out mice exposed to CS (54).

The mechanism by which CS induces autophagy in epithelial cells is unclear; however, 
oxidative stress is a possible link that connects COPD to autophagy. Oxidative stress can 
damage lipids, proteins and DNA, and also activate autophagy (55). Furthermore, it is 
recognized as a major factor that predisposes an individual to developing COPD (56). Various 
types of inflammatory cell including eosinophils and structural cells produce ROS in the 
airways of a COPD patient (56,57). Treatment with the antioxidants such as N-acetyl-L-
cysteine reverses starvation-induced autophagosome formation (which is associated with 
intracellular ROS production) in cultured cells (58). H2O2-induced autophagic cell death can 
be prevented by knockdown of ATG such as Beclin-1, Atg5, and Atg7 (59). Indeed, exposure to 
CS induces pro-oxidant states in several cell types, including epithelial cells (60). In addition, 
chemical inhibitors of NADPH oxidase, a membrane-dependent source of ROS, inhibit CS 
extract-induced activation of LC3B (54). The evidence cited above suggests that increased 
activation of autophagic pathways may trigger or exacerbate COPD. Thus, resolution of 
autophagy should be studied with respect to alleviating COPD.

CRS

CRS is characterized by chronic inflammation of the sinonasal mucosa. Clinical symptoms 
include sinus pressure, nasal congestion, rhinorrhea, and a reduced sense of smell persisting 

5/12https://doi.org/10.4110/in.2019.19.e5

Autophagy and Eosinophilic Airway Inflammation

https://immunenetwork.org

https://immunenetwork.org


for more than 12 wk (61). It is commonly categorized into 2 groups based on the presence or 
absence of nasal polyps (NPs): chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic 
rhinosinusitis without nasal polyps (CRSsNP) (62). The 2 groups show distinct inflammatory 
patterns. Whereas CRSsNP is characterized by type 1 inflammation with increased levels 
of IFN-γ in the inflamed sinus mucosa and low ECP/myeloperoxidase ratios, CRSwNP is 
typically characterized by type 2 inflammation, which is associated with a typical Th2-skewed 
eosinophilic inflammation with high IL-5 and ECP concentrations in the polyps (63,64). IL-5 
is a potent activator and survival factor for eosinophils. Several reports show that eosinophilic 
inflammation is dominant in patients with severe refractory CRS (65,66). However, recent 
findings in Eastern Asia countries showed that CRSwNP can be classified into eosinophilic and 
non-eosinophilic type (67). NP from Caucasian patients are mainly eosinophil-dominant with 
robust Th2 response (>80%), whereas NP from Asian patients (Korea, Japan, and China) are 
characterized by less infiltration of eosinophils but are largely neutrophil-dominant (>50%) 
with mixed Th1 or Th17 type inflammation (68-72). Of interest, NP from Asian patients born 
and resided in the United States appears non-eosiniphil-dominant, suggesting the contribution 
of genetic factors to eosinophilic inflammation in NP (73).

Another core pathologic feature of CRS is elevated prostaglandin D2 (PGD2) levels. 
Upregulation of PGD2 in NPs correlates strongly with the number of mast cells that mainly 
produce PGD2 and play an important role in orchestrating eosinophil infiltration in patients 
with CRS (74-76). Also, expression of PGD2 synthase is increased in patients with CRSwNP 
and correlates positively with eosinophilic inflammation (77). However, it is unclear why 
these pathologic features occur in CRS.

Previous reports suggest that autophagy plays an important role in CRS (Table 1) (15,16). 
Chen et al. (15) showed that expression of LC3 protein fell markedly, but Akt/mTOR signaling 
(a negative regulator of autophagy) was activated, in NPs from patients with CRSwNP but 
not in individuals with normal nasal mucosa. In addition, they demonstrated a negative 
correlation between autophagy and NPs; also, formation of LC3 puncta (an alternative 
indicator of autophagy) decreased in NP-derived fibroblasts (15). In another report, Wang et 
al. (16) showed that NP tissues are deficient in autophagy and that cyclooxygenase 2 (COX-2) 
is negatively regulated by autophagy in NP-derived fibroblasts. LC3 and COX-2 (a common 
indicator of inflammation) were analyzed by immunoblotting in fresh tissues from NPs and 
control nasal mucosa. LC3 expression was decreased, while COX-2 expression increased 
significantly, in fresh NP tissues compared with control nasal mucosa (16). In addition, COX-
2 expression by NP-derived fibroblasts and nasal mucosa-derived fibroblasts was reduced 
by starvation-induced autophagy and by overexpression of LC3; however, it increased upon 
inhibition of autophagy by 3-MA (16).

Choi et al. (17) used a murine model of CRS (mice in which Atg7 is conditionally deleted 
in a myeloid cell-specific manner) to show that disruption of autophagy in CRS is linked 
to dysregulation of PGD2 production and eosinophilic inflammation (Table 1). Indeed, 
more severe exacerbation of CRS was induced in myeloid cell-specific Atg7-deficient mice 
than in wild-type mice with increased infiltration of eosinophils and production of PGD2 
(17). In addition, depletion of autophagy-deficient macrophages alleviated eosinophilic 
inflammation and PGD2 dysregulation significantly (17). These findings suggest a critical 
role of autophagy in exacerbating eosinophilic inflammation and in the pathologic features 
associated with CRS. Also, it suggests the possibility that autophagy may be a valuable 
therapeutic target for resolution of eosinophilic inflammation in CRS.
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CONCLUSION

Undoubtedly, the role of eosinophils in airway inflammation is important. Here, we describe 
the importance of autophagy in asthma, COPD, and CRS, focusing on eosinophil-mediated 
airway inflammations.

SNP rs12212740 G>A of Atg5 correlates significantly with loss of pre-bronchodilator FEV1 
in asthmatic patients. Inhibition of autophagy in a murine asthma model improves AHR, 
reduces the number of infiltrating eosinophils, and reduces IL-5 levels in bronchoalveolar 
lavage fluid. In addition, autophagy is a potential link between virus infection and asthma. 
However, deficiency of CD11c-specific autophagy promotes neutrophilic inflammation in a 
murine asthma model. These results suggest that autophagy plays different roles depending 
on the cell type and/or the disease model employed. Thus, further studies are necessary if 
autophagy is to be targeted successfully to treat asthma.

With respect to COPD, autophagy is an important regulator of epithelial cell apoptosis, 
which contributes to the pathogenesis of COPD. CS extract induces not only apoptosis 
pathway, e.g., DISC and caspase-8, but also activates LC3B, autophagosome formation 
and, eventually, caspase-3 in epithelial cells. These pathways are inhibited either by siRNA-
mediated knockdown of Beclin-1 or LC3B, or by an inhibitor of autophagy such as 3-MA. 
Indeed, autophagosome formation is higher in COPD patients than in healthy controls. It 
is suggested that oxidative stress is a critical mediator of apoptosis in COPD. Exposure to 
CS induces pro-oxidant-mediated stress in epithelial cells. Chemical inhibitors of NADPH 
oxidase, a membrane-dependent source of ROS, inhibit CS extract-induced activation of 
LC3B and apoptosis. These data implicate autophagy as an important regulator of epithelial 
cell apoptosis and in the pathogenesis of CS-induced COPD.

Autophagy is also linked to eosinophilic inflammation in CRS. CRSwNP is associated with a 
typical Th2-skewed eosinophilic inflammation, with high IL-5 and ECP levels in NPs. Another 
core pathologic feature of CRS is increased expression of PGD2. Upregulation of PGD2 in 
NPs correlates strongly with the number of mast cells, which produce PGD2 and play an 
important role in orchestrating eosinophil infiltration in patients with CRS. Although it is not 
clear how these 2 factors are linked, we provide evidence that autophagy is a key mediator. 
Observational studies suggest that autophagy is involved in CRS. For example, expression of 
LC3 protein correlates negatively with NP development and expression of COX-2. In addition, 
increased eosinophilic inflammation and PGD2 production induce more severe CRS in 
myeloid cell-specific Atg7-deficient mice than in wild-type mice. These findings reveal the 
critical role of autophagy in exacerbating CRS.

Although autophagy plays diverse roles, either protective or detrimental, in chronic airway 
inflammatory (depending on the type of cell affected and the disease model used), it holds 
promise as a novel therapeutic target. However, the molecular mechanism underlying disease 
pathogenesis is not clear. In addition to its role in regulating eosinophilic or neutrophilic 
inflammation, autophagy has a broad effect on diverse Th responses, likely by controlling 
innate immune cells. Autophagy-deficient macrophages promote production of the Th1 
cytokine IFN-γ during GalN/LPS-induced liver injury (78) and dextran sulfate sodium-
induced colitis (79). Autophagy-deficient myeloid cells also promote Th17 responses during 
Mycobacterium tuberculosis infection (80), as well as Th2 responses during eosinophilic CRS 
(17). These results suggest that autophagy is a versatile immune modulator that will require 
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careful modulation to achieve therapeutic benefit. Thus, further studies are needed to 
demonstrate how autophagy contributes to the pathogenesis of various airway inflammatory 
diseases, and to establish an appropriate therapeutic strategy dependent of the unique 
context of different diseases.
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