DOI QR코드

DOI QR Code

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata (Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University)
  • Received : 2018.12.14
  • Accepted : 2019.02.07
  • Published : 2019.02.28

Abstract

Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

Keywords

Acknowledgement

The author's work was supported by JPSP Grant-in-Aid for Scientific Research 26293062, 17H05790, and 18H02610.

References

  1. Guo Y, Orme J, Mohan C. A genopedia of lupus genes - lessons from gene knockouts. Curr Rheumatol Rev 2013;9:90-99. https://doi.org/10.2174/1573397111309020003
  2. Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol 2015;11:329-341. https://doi.org/10.1038/nrneph.2015.33
  3. Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity 2010;32:305-315. https://doi.org/10.1016/j.immuni.2010.03.012
  4. Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2014;7:a016246.
  5. Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 2016;44:739-754. https://doi.org/10.1016/j.immuni.2016.04.002
  6. Miyake K, Shibata T, Ohto U, Shimizu T, Saitoh SI, Fukui R, Murakami Y. Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int Immunol 2018;30:43-51. https://doi.org/10.1093/intimm/dxy016
  7. Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB. Intracellular nucleic acid detection in autoimmunity. Annu Rev Immunol 2017;35:313-336. https://doi.org/10.1146/annurev-immunol-051116-052331
  8. Tsubata T. B-cell tolerance and autoimmunity. F1000 Res 2017;6:391.
  9. Tsubata T. Ligand recognition determines the role of inhibitory B cell co-receptors in the regulation of B cell homeostasis and autoimmunity. Front Immunol 2018;9:2276.
  10. Hitomi Y, Tsuchiya N, Kawasaki A, Ohashi J, Suzuki T, Kyogoku C, Fukazawa T, Bejrachandra S, Siriboonrit U, Chandanayingyong D, et al. CD72 polymorphisms associated with alternative splicing modify susceptibility to human systemic lupus erythematosus through epistatic interaction with FCGR2B. Hum Mol Genet 2004;13:2907-2917. https://doi.org/10.1093/hmg/ddh318
  11. Qu WM, Miyazaki T, Terada M, Lu LM, Nishihara M, Yamada A, Mori S, Nakamura Y, Ogasawara H, Yazawa C, et al. Genetic dissection of vasculitis in MRL/lpr lupus mice: a novel susceptibility locus involving the CD72c allele. Eur J Immunol 2000;30:2027-2037. https://doi.org/10.1002/1521-4141(200007)30:7<2027::AID-IMMU2027>3.0.CO;2-S
  12. Li DH, Winslow MM, Cao TM, Chen AH, Davis CR, Mellins ED, Utz PJ, Crabtree GR, Parnes JR. Modulation of peripheral B cell tolerance by CD72 in a murine model. Arthritis Rheum 2008;58:3192-3204. https://doi.org/10.1002/art.23812
  13. Xu M, Hou R, Sato-Hayashizaki A, Man R, Zhu C, Wakabayashi C, Hirose S, Adachi T, Tsubata T. CD72c is a modifier gene that regulates Faslpr-induced autoimmune disease. J Immunol 2013;190:5436-5445. https://doi.org/10.4049/jimmunol.1203576
  14. Akatsu C, Shinagawa K, Numoto N, Liu Z, Ucar AK, Aslam M, Phoon S, Adachi T, Furukawa K, Ito N, et al. CD72 negatively regulates B lymphocyte responses to the lupus-related endogenous toll-like receptor 7 ligand Sm/RNP. J Exp Med 2016;213:2691-2706. https://doi.org/10.1084/jem.20160560
  15. Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H, Inoue M, Minowa O, Yoshida A, Deguchi K, Sato H, et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 2014;40:199-212.
  16. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006;25:417-428. https://doi.org/10.1016/j.immuni.2006.07.013
  17. Savarese E, Steinberg C, Pawar RD, Reindl W, Akira S, Anders HJ, Krug A. Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum 2008;58:1107-1115. https://doi.org/10.1002/art.23407
  18. Santiago-Raber ML, Dunand-Sauthier I, Wu T, Li QZ, Uematsu S, Akira S, Reith W, Mohan C, Kotzin BL, Izui S. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun 2010;34:339-348. https://doi.org/10.1016/j.jaut.2009.11.001
  19. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002;416:603-607. https://doi.org/10.1038/416603a
  20. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, Christensen SR, Shlomchik MJ, Viglianti GA, Rifkin IR, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 2005;202:1171-1177. https://doi.org/10.1084/jem.20050630
  21. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003;197:711-723. https://doi.org/10.1084/jem.20021553
  22. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003;100:2610-2615. https://doi.org/10.1073/pnas.0337679100
  23. Kadowaki N, Antonenko S, Lau JY, Liu YJ. Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 2000;192:219-226. https://doi.org/10.1084/jem.192.2.219
  24. Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S, Wagner H, Schmid RM, Bauer S, Krug A. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 2006;107:3229-3234. https://doi.org/10.1182/blood-2005-07-2650
  25. Kiefer K, Oropallo MA, Cancro MP, Marshak-Rothstein A. Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 2012;90:498-504. https://doi.org/10.1038/icb.2012.10
  26. Das A, Heesters BA, Bialas A, O'Flynn J, Rifkin IR, Ochando J, Mittereder N, Carlesso G, Herbst R, Carroll MC. Follicular dendritic cell activation by TLR ligands promotes autoreactive B cell responses. Immunity 2017;46:106-119. https://doi.org/10.1016/j.immuni.2016.12.014
  27. Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 2015;15:429-440. https://doi.org/10.1038/nri3850
  28. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, de Silva U, Bailey SL, Witte T, Vyse TJ, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007;39:1065-1067. https://doi.org/10.1038/ng2091
  29. Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, Alarcon-Riquelme ME, Gallant CJ, Boackle SA, Criswell LA, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 2011;12:270-279. https://doi.org/10.1038/gene.2010.73
  30. Stetson DB, Ko JS, Heidmann T, Medzhitov R. TREX1 prevents cell-intrinsic initiation of autoimmunity. Cell 2008;134:587-598. https://doi.org/10.1016/j.cell.2008.06.032
  31. Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 2006;23:133-142. https://doi.org/10.1016/j.molcel.2006.06.005
  32. Lehtinen DA, Harvey S, Mulcahy MJ, Hollis T, Perrino FW. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J Biol Chem 2008;283:31649-31656. https://doi.org/10.1074/jbc.M806155200
  33. Mazur DJ, Perrino FW. Excision of 3' termini by the TREX1 and TREX2 3'-->5' exonucleases. Characterization of the recombinant proteins. J Biol Chem 2001;276:17022-17029. https://doi.org/10.1074/jbc.M100623200
  34. Beck-Engeser GB, Eilat D, Wabl M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 2011;8:91.
  35. Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci U S A 2015;112:E5699-E5705. https://doi.org/10.1073/pnas.1516465112
  36. Motani K, Ito S, Nagata S. DNA-mediated cyclic GMP-AMP synthase-dependent and -independent regulation of innate immune responses. J Immunol 2015;194:4914-4923. https://doi.org/10.4049/jimmunol.1402705
  37. Kato Y, Park J, Takamatsu H, Konaka H, Aoki W, Aburaya S, Ueda M, Nishide M, Koyama S, Hayama Y, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis 2018.77:1507-1515. https://doi.org/10.1136/annrheumdis-2018-212988
  38. Teichmann LL, Schenten D, Medzhitov R, Kashgarian M, Shlomchik MJ. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 2013;38:528-540. https://doi.org/10.1016/j.immuni.2012.11.017
  39. Hu X, Kim H, Stahl E, Plenge R, Daly M, Raychaudhuri S. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am J Hum Genet 2011;89:496-506. https://doi.org/10.1016/j.ajhg.2011.09.002
  40. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease. Cell 2013;155:934-947. https://doi.org/10.1016/j.cell.2013.09.053
  41. Adachi T, Flaswinkel H, Yakura H, Reth M, Tsubata T. The B cell surface protein CD72 recruits the tyrosine phosphatase SHP-1 upon tyrosine phosphorylation. J Immunol 1998.160:4662-4665. https://doi.org/10.4049/jimmunol.160.10.4662
  42. Adachi T, Wakabayashi C, Nakayama T, Yakura H, Tsubata T. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol 2000;164:1223-1229. https://doi.org/10.4049/jimmunol.164.3.1223
  43. Dustin LB, Plas DR, Wong J, Hu YT, Soto C, Chan AC, Thomas ML. Expression of dominant-negative srchomology domain 2-containing protein tyrosine phosphatase-1 results in increased Syk tyrosine kinase activity and B cell activation. J Immunol 1999.162:2717-2724. https://doi.org/10.4049/jimmunol.162.5.2717
  44. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356:314-317. https://doi.org/10.1038/356314a0
  45. Izui S, Kelley VE, Masuda K, Yoshida H, Roths JB, Murphy ED. Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol 1984;133:227-233. https://doi.org/10.4049/jimmunol.133.1.227
  46. Robinson WH, Ying H, Miceli MC, Parnes JR. Extensive polymorphism in the extracellular domain of the mouse B cell differentiation antigen Lyb-2/CD72. J Immunol 1992;149:880-886. https://doi.org/10.4049/jimmunol.149.3.880
  47. Tsubata T. Negative regulation of B cell responses and self-tolerance to RNA-related lupus self-antigen. Proc Jpn Acad, Ser B, Phys Biol Sci 2018;94:35-44. https://doi.org/10.2183/pjab.94.003
  48. Pao LI, Lam KP, Henderson JM, Kutok JL, Alimzhanov M, Nitschke L, Thomas ML, Neel BG, Rajewsky K. B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 2007;27:35-48. https://doi.org/10.1016/j.immuni.2007.04.016
  49. Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang ML, Tedder TF. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 1996;5:551-562. https://doi.org/10.1016/S1074-7613(00)80270-8
  50. Nitschke L, Carsetti R, Ocker B, Kohler G, Lamers MC. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol 1997;7:133-143. https://doi.org/10.1016/S0960-9822(06)00057-1
  51. Otipoby KL, Andersson KB, Draves KE, Klaus SJ, Farr AG, Kerner JD, Perlmutter RM, Law CL, Clark EA. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 1996;384:634-637. https://doi.org/10.1038/384634a0
  52. Lamagna C, Hu Y, DeFranco AL, Lowell CA. B cell-specific loss of Lyn kinase leads to autoimmunity. J Immunol 2014;192:919-928. https://doi.org/10.4049/jimmunol.1301979
  53. Hoffmann A, Kerr S, Jellusova J, Zhang J, Weisel F, Wellmann U, Winkler TH, Kneitz B, Crocker PR, Nitschke L. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol 2007;8:695-704. https://doi.org/10.1038/ni1480
  54. Jellusova J, Wellmann U, Amann K, Winkler TH, Nitschke L. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J Immunol 2010;184:3618-3627. https://doi.org/10.4049/jimmunol.0902711
  55. Takai T, Nakamura A, Endo S. Role of PIR-B in autoimmune glomerulonephritis. J Biomed Biotechnol 2011;2011:275302.
  56. Wilkinson R, Lyons AB, Roberts D, Wong MX, Bartley PA, Jackson DE. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. Blood 2002;100:184-193. https://doi.org/10.1182/blood-2002-01-0027
  57. Brown MH, Lacey E. A ligand for CD5 is CD5. J Immunol 2010;185:6068-6074. https://doi.org/10.4049/jimmunol.0903823
  58. Kumanogoh A, Watanabe C, Lee I, Wang X, Shi W, Araki H, Hirata H, Iwahori K, Uchida J, Yasui T, et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity 2000;13:621-631. https://doi.org/10.1016/S1074-7613(00)00062-5
  59. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007;7:255-266. https://doi.org/10.1038/nri2056
  60. Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014;14:653-666. https://doi.org/10.1038/nri3737
  61. Hutzler S, Ozgor L, Naito-Matsui Y, Klasener K, Winkler TH, Reth M, Nitschke L. The ligand-binding domain of Siglec-G is crucial for its selective inhibitory function on B1 cells. J Immunol 2014;192:5406-5414. https://doi.org/10.4049/jimmunol.1302875
  62. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016;16:566-580. https://doi.org/10.1038/nrc.2016.97
  63. Mouchess ML, Arpaia N, Souza G, Barbalat R, Ewald SE, Lau L, Barton GM. Transmembrane mutations in Toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation. Immunity 2011;35:721-732. https://doi.org/10.1016/j.immuni.2011.10.009
  64. Canadian Hydroxychloroquine Study Group. A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N Engl J Med 1991;324:150-154. https://doi.org/10.1056/NEJM199101173240303
  65. Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun 2019;96:1-13. https://doi.org/10.1016/j.jaut.2018.11.001
  66. Lafyatis R, York M, Marshak-Rothstein A. Antimalarial agents: closing the gate on Toll-like receptors? Arthritis Rheum 2006;54:3068-3070. https://doi.org/10.1002/art.22157
  67. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011;186:4794-4804. https://doi.org/10.4049/jimmunol.1000702