Abstract
Existing fashion web sites show only the search results for one type of clothes in items such as tops and bottoms. As the fashion market grows, consumers are demanding a platform to find a variety of fashion information. To solve this problem, we devised the idea of linking image classification through deep learning with a website and integrating SNS functions. User uploads their own image to the web site and uses the deep learning server to identify, classify and store the image's characteristics. Users can use the stored information to search for the images in various combinations. In addition, communication between users can be actively performed through the SNS function. Through this, the plan to solve the problem of existing fashion-related sites was prepared.
기존에 존재하는 패션 웹 사이트 에서는 상의, 하의 등의 품목에서는 한 가지 종류의 옷에 대한 검색결과만 보여주기 때문에 사용자가 원하는 옷에 대한 조합을 찾을 수 없다. 또 패션 시장이 성장함에 따라 소비자들은 다양한 패션 정보를 찾을 수 플랫폼을 요구하고 있다. 이러한 문제를 해결하고자 하여 딥러닝을 통한 이미지분류를 웹 사이트와 연동하고 SNS 기능을 접목하는 아이디어를 고안해냈다. 웹 사이트에 사용자가 본인의 이미지을 업로드하여 딥러닝 서버를 통해서 이미지의 특징을 파악하고 분류하여 저장한다. 사용자들은 저장된 정보를 가지고 여러 조합을 통해 원하는 이미지들을 검색할 수 있다. 또 SNS 기능을 통해 사용자간의 커뮤니케이션이 활발하게 이루어질 수 있다. 이를 통해서 기존에 존재하는 패션 관련 사이트의 문제를 해결하는 방안을 마련하였다.